Skip to main content

Research Repository

Advanced Search

All Outputs (60)

Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines (2020)
Presentation / Conference Contribution
Transi, T., Murataliyev, M., Degano, M., Preci, E., Gerada, D., & Gerada, C. (2020). Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines. . https://doi.org/10.1109/iecon43393.2020.9255237

Nowadays, Interior Permanent Magnet Synchronous Machines (IPMSM) are widely adopted in various sectors such as automotive, railway or public transportation (e- buses, trams, etc.). Among the benefits that these machines present, they offer a number o... Read More about Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines.

A Complete Equivalent Circuit for Linear Induction Motors With Laterally Asymmetric Secondary for Urban Railway Transit (2020)
Journal Article
Lv, G., Zeng, D., Zhou, T., & Degano, M. (2021). A Complete Equivalent Circuit for Linear Induction Motors With Laterally Asymmetric Secondary for Urban Railway Transit. IEEE Transactions on Energy Conversion, 36(2), 1014-1022. https://doi.org/10.1109/tec.2020.3026334

Since the linear induction motor commonly work with a laterally asymmetric secondary as it is applied to pull rail vehicles, this paper presents a complete equivalent circuit model considering the asymmetry to predict thrust, vertical and transversal... Read More about A Complete Equivalent Circuit for Linear Induction Motors With Laterally Asymmetric Secondary for Urban Railway Transit.

Impact of Star Connection Layouts on the Control of Multiphase Induction Motor Drives Under Open-Phase Fault (2020)
Journal Article
Sala, G., Mengoni, M., Rizzoli, G., Degano, M., Zarri, L., & Tani, A. (2021). Impact of Star Connection Layouts on the Control of Multiphase Induction Motor Drives Under Open-Phase Fault. IEEE Transactions on Power Electronics, 36(4), 3717-3726. https://doi.org/10.1109/tpel.2020.3024205

This paper presents a post-fault control algorithm that minimizes the stator Joule losses in multiphase induction machines under an open-phase fault and for different star connection layouts. The key novelty is that the algorithm can be applied to an... Read More about Impact of Star Connection Layouts on the Control of Multiphase Induction Motor Drives Under Open-Phase Fault.

Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System (2020)
Journal Article
Bu, F., Xuan, F., Yang, Z., Gao, Y., Pan, Z., Degano, M., & Gerada, C. (2021). Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System. IEEE/ASME Transactions on Mechatronics, 26(2), 1129-1139. https://doi.org/10.1109/tmech.2020.3019039

In this paper, a rotor position tracking control (RPTC) strategy is proposed to effectively reduce the speed fluctuation for a direct-drive permanent magnet synchronous motor (DD-PMSM) servo system operating at low speed with different torque disturb... Read More about Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System.

Multi-Sector Windings For Bearing Relief E-Machine: Saturation and Cross Coupling Effects (2020)
Presentation / Conference Contribution
Mahmoud, H., Valente, G., Degano, M., Nardo, M. D., Gerada, C., & James, B. (2020). Multi-Sector Windings For Bearing Relief E-Machine: Saturation and Cross Coupling Effects. . https://doi.org/10.1109/icem49940.2020.9270761

The key driving elements for any electrical machine (EM) used in aerospace and other safety critical applications are the reliability, mass, volume, and efficiency. To reduce mass/volume while satisfying the power required, the option is to increase... Read More about Multi-Sector Windings For Bearing Relief E-Machine: Saturation and Cross Coupling Effects.

Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement (2020)
Journal Article
Marfoli, A., Di Nardo, M., Degano, M., Gerada, C., & Chen, W. (2021). Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement. IEEE Transactions on Energy Conversion, 36(2), 1271-1279. https://doi.org/10.1109/tec.2020.3019934

Squirrel cage induction motor is the most widely adopted electrical machine in applications directly fed by the main grid. The analysis, design and optimization of this machine topology has been addressed by a considerable amount of literature over t... Read More about Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement.

A Digital Internal Model Current Controller for Salient Machines (2020)
Journal Article
Petric, I. Z., Vukosavic, S. N., DEgano, M., & Galassini, A. (2021). A Digital Internal Model Current Controller for Salient Machines. IEEE Transactions on Industrial Electronics, 68(6), 4703-4717. https://doi.org/10.1109/tie.2020.2988234

The performance of anisotropic electrical machines is strongly dependent on the current loop characteristics. The problems for achieving robustness and fast response, without overshoot and oscillations, are mainly related to different values and beha... Read More about A Digital Internal Model Current Controller for Salient Machines.

A Novel Sizing Approach for Synchronous Reluctance Machines (2020)
Journal Article
Murataliyev, M., Degano, M., & Galea, M. (2021). A Novel Sizing Approach for Synchronous Reluctance Machines. IEEE Transactions on Industrial Electronics, 68(3), 2083-2095. https://doi.org/10.1109/tie.2020.2975461

This paper presents a simple analytical model for the sizing of Synchronous Reluctance (SynRel) machines. The accuracy of the method is achieved by modelling a simple rotor geometry that presents all the characteristics of a real machine. The analyti... Read More about A Novel Sizing Approach for Synchronous Reluctance Machines.

Speed Ripple Reduction of Direct-Drive PMSM Servo System at Low-Speed Operation Using Virtual Cogging Torque Control Method (2020)
Journal Article
Bu, F., Yang, Z., Gao, Y., Pan, Z., Pu, T., Degano, M., & Gerada, C. (2021). Speed Ripple Reduction of Direct-Drive PMSM Servo System at Low-Speed Operation Using Virtual Cogging Torque Control Method. IEEE Transactions on Industrial Electronics, 68(1), 160-174. https://doi.org/10.1109/tie.2019.2962400

This paper presents a virtual cogging torque (VCT) control method to reduce the speed ripple of direct-drive permanent magnet synchronous machine (DD-PMSM) servo system under low-speed conditions. Compared with other factors, at low speeds, the coggi... Read More about Speed Ripple Reduction of Direct-Drive PMSM Servo System at Low-Speed Operation Using Virtual Cogging Torque Control Method.

Fault-Tolerant Electrical Machines for Transport Applications (2019)
Presentation / Conference Contribution
Ismagilov, F., Gerada, C., Degano, M., Gurevich, O., Guliyenko, A., Vavilov, V., & Gusakov, D. (2019). Fault-Tolerant Electrical Machines for Transport Applications. . https://doi.org/10.1109/ICOECS46375.2019.8949914

This paper provides an overview of-fault-Tolerant electric machine for transport applications. A number of motor failure cases and methods to prevent or minimize their impact on the drive system are considered. The fault tolerance of bearings, stator... Read More about Fault-Tolerant Electrical Machines for Transport Applications.

Study of Regenerative Braking Effects in a Small Electric Race Car using Energetic Macroscopic Representation (2019)
Presentation / Conference Contribution
Transi, T., Pereirinha, P. G., Bouscayrol, A., & Degano, M. (2019). Study of Regenerative Braking Effects in a Small Electric Race Car using Energetic Macroscopic Representation. In 2019 International Young Engineers Forum (YEF-ECE) (106-111). https://doi.org/10.1109/YEF-ECE.2019.8740815

The objective of this work is the modelization of an electric Formula Student car through Energetic Macroscopic Representation (EMR) graphical formalism and to study the effect of regenerative braking. EMR is used to easily define a control design an... Read More about Study of Regenerative Braking Effects in a Small Electric Race Car using Energetic Macroscopic Representation.

A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability (2019)
Journal Article
Bao, Y., Degano, M., Wang, S., Chuan, L., Xu, Z., Zhang, H., & Gerada, C. (2020). A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability. IEEE Transactions on Industrial Electronics, 67(4), 2553-2563. https://doi.org/10.1109/tie.2019.2914616

The rotor structure of synchronous reluctance machines (SynRel) is conventionally retained mechanically by iron ribs. In this paper a novel structure for high speed synchronous reluctance rotor is presented. The novelty of this work is the proof of a... Read More about A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability.

Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System (2019)
Journal Article
Liu, H., Bu, F., Huang, W., Liu, L., Hu, Y., Degano, M., & Gerada, C. (2020). Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System. IEEE Transactions on Industrial Electronics, 67(4), 2607-2617. https://doi.org/10.1109/TIE.2019.2912767

This paper presents an integrated control strategy for a starter/generator (S/G) system based on five-phase dual-stator winding induction machine (FPDWIM). The FPDWIM has a cage-type rotor and two sets of stator windings. One is a five-phase control... Read More about Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System.

An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation (2019)
Journal Article
Wang, S., Kang, J., Degano, M., Galassini, A., & Gerada, C. (2020). An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation. IEEE Transactions on Industrial Electronics, 67(4), 2630-2641. https://doi.org/10.1109/TIE.2019.2912766

This paper deals with the high accurate current set-points solution for Interior Permanent-Magnet Synchronous Motors (IPMSM) in wide-speed range applications. Considering voltage and current constraints, the operating regions can be divided into Maxi... Read More about An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation.

Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines (2019)
Presentation / Conference Contribution
Sala, G., De Gaetano, D., Degano, M., & Gerada, C. (2019). Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines. In Proceedings - 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (29-33). https://doi.org/10.1109/WEMDCD.2019.8887831

This work is showing in detail the flux density behaviour in the stator teeth of a synchronous machine. A 3-phase Surface Permanent Magnet (SPM) motor is considered. These motors are widely employed in applications where high efficiency and power den... Read More about Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines.

A resolver-to-digital conversion method based on third-order rational fraction polynomial approximation for PMSM control (2018)
Journal Article
Wang, S., Kang, J., Degano, M., & Buticchi, G. (2018). A resolver-to-digital conversion method based on third-order rational fraction polynomial approximation for PMSM control. IEEE Transactions on Industrial Electronics, 66(8), 6383-6392. https://doi.org/10.1109/TIE.2018.2884209

—In this paper, a cost-effective and highly accurate resolver-to-digital conversion (RDC) method is presented. The core of the idea is to apply a third-order rational fraction polynomial approximation (TRFPA) for the conversion of sinusoidal signals... Read More about A resolver-to-digital conversion method based on third-order rational fraction polynomial approximation for PMSM control.

Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization (2018)
Presentation / Conference Contribution
Mahmoud, H., Degano, M., Bacco, G., Bianchi, N., & Gerada, C. (2018). Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (1640-1647). https://doi.org/10.1109/ECCE.2018.8558292

The complex rotor structure of synchronous reluctance machines causes a high harmonic content in the air-gap flux density and then flux density fluctuations in different iron parts. The importance of determining accurately the total iron losses in th... Read More about Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization.

Multi-port power conversion systems for the more electric aircraft (2018)
Presentation / Conference Contribution
Gu, C., Zhang, H., Buticchi, G., Sala, G., Galassini, A., Papadopoulos, S., & Degano, M. (2018). Multi-port power conversion systems for the more electric aircraft. . https://doi.org/10.1109/IECON.2018.8592915

In the framework of the More Electric Aircraft (MEA), weight reduction and energy efficiency constitute the key figures. In addition to these requirements, the safety and the continuity of operation is of critical importance. These sets of desired fe... Read More about Multi-port power conversion systems for the more electric aircraft.

A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation (2018)
Presentation / Conference Contribution
Wang, S., Degano, M., Kang, J., Galassini, A., & Gerada, C. (2018). A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation. In Proceedings 2018 XIII International Conference on Electrical Machines (ICEM) (1360-1366). https://doi.org/10.1109/ICELMACH.2018.8506853

Maximum torque per ampere control (MTPA) takes full advantage of the reluctance torque aiming at the minimum copper loss, which can increase the torque output under the minimum current conditions. The traditional MTPA method makes use of equations wi... Read More about A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation.

Eccentric reluctance and permanent magnets synchronous machines comparison (2018)
Journal Article
Mahmoud, H., Bianchi, N., Degano, M., Al-Ani, M., & Gerada, C. (2018). Eccentric reluctance and permanent magnets synchronous machines comparison. IEEE Transactions on Industry Applications, 54(6), 5760-5771. https://doi.org/10.1109/TIA.2018.2848278

This paper deals with a comparative study between reluctance (REL), permanent magnet assisted reluctance (PMAREL), and surface mounted permanent magnet synchronous machines with rotor eccentricity. Static, dynamic, and combined eccentricity cases are... Read More about Eccentric reluctance and permanent magnets synchronous machines comparison.