Skip to main content

Research Repository

Advanced Search

All Outputs (27)

A High Capacity Gas Diffusion Electrode for Li–O2 Batteries (2024)
Journal Article
Jenkins, M., Dewar, D., Lagnoni, M., Yang, S., Rees, G. J., Bertei, A., Johnson, L. R., Gao, X., & Bruce, P. G. (2024). A High Capacity Gas Diffusion Electrode for Li–O2 Batteries. Advanced Materials, 36(41), Article 2405715. https://doi.org/10.1002/adma.202405715

The very high theoretical specific energy of the lithium–air (Li–O2) battery (3500 Wh kg−1) compared with other batteries makes it potentially attractive, especially for the electrification of flight. While progress has been made in realizing the Li–... Read More about A High Capacity Gas Diffusion Electrode for Li–O2 Batteries.

Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte (2024)
Journal Article
Dimogiannis, K., Sankowski, A., Holc, C., Parmenter, C. D., Newton, G. N., Walsh, D. A., …Johnson, L. R. (2024). Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte. Energy Storage Materials, 67, Article 103280. https://doi.org/10.1016/j.ensm.2024.103280

The volumetric energy density of magnesium exceeds that of lithium, making magnesium batteries particularly promising for next-generation energy storage. However, electrochemical cycling of magnesium electrodes in common battery electrolytes is coulo... Read More about Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte.

Understanding the limits of Li-NMC811 half-cells (2023)
Journal Article
McNulty, R. C., Hampson, E., Cutler, L. N., Grey, C. P., Dose, W. M., & Johnson, L. R. (2023). Understanding the limits of Li-NMC811 half-cells. Journal of Materials Chemistry A, 11(34), 18302-18312. https://doi.org/10.1039/d3ta00912b

As we push the boundaries of state-of-the-art lithium-ion intercalation materials, such as nickel-rich chemistries, the ability to isolate and understand specific degradation and performance limitations is becoming increasingly important. Half-cells,... Read More about Understanding the limits of Li-NMC811 half-cells.

A lithium-air battery and gas handling system demonstrator (2023)
Journal Article
Jordan, J. W., Vailaya, G., Holc, C., Jenkins, M., McNulty, R. C., Puscalau, C., …Johnson, L. R. (2024). A lithium-air battery and gas handling system demonstrator. Faraday Discussions, 248, 381-391. https://doi.org/10.1039/d3fd00137g

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem−1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it... Read More about A lithium-air battery and gas handling system demonstrator.

Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation (2023)
Journal Article
Ahn, S., Zor, C., Yang, S., Lagnoni, M., Dewar, D., Nimmo, T., …Bruce, P. G. (2023). Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Nature Chemistry, 15(7), 1022–1029. https://doi.org/10.1038/s41557-023-01203-3

Although Li–air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast... Read More about Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation.

Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery (2023)
Journal Article
McNulty, R. C., Jones, K. D., Holc, C., Jordan, J. W., Bruce, P. G., Walsh, D. A., …Johnson, L. R. (2023). Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery. Advanced Energy Materials, 13(3), Article 2300579. https://doi.org/10.1002/aenm.202300579

Understanding and eliminating degradation of the electrolyte solution is arguably the major challenge in the development of high energy density lithium–air batteries. The use of acetonitrile provides cycle stability comparable to current state-of-the... Read More about Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery.

Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes (2023)
Journal Article
Jordan, J. W., Mortiboy, B., Khlobystov, A. N., Johnson, L. R., Newton, G. N., & Walsh, D. A. (2023). Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 145(16), 9052–9058. https://doi.org/10.1021/jacs.3c00554

Understanding ion transport in solid materials is crucial in the design of electrochemical devices. Of particular interest in recent years is the study of ion transport across 2-dimensional, atomically thin crystals. In this contribution, we describe... Read More about Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes.

Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries (2023)
Journal Article
McNulty, R. C., Penston, K., Amin, S. S., Stal, S., Lee, J. Y., Samperi, M., …Newton, G. N. (2023). Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries. Angewandte Chemie International Edition, 62(12), Article e202216066. https://doi.org/10.1002/anie.202216066

The mixing of [V10O28]6− decavanadate anions with a dicationic gemini surfactant (gem) leads to the spontaneous self-assembly of surfactant-templated nanostructured arrays of decavanadate clusters. Calcination of the material under air yields highly... Read More about Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Enflurane Additive for Sodium Negative Electrodes (2022)
Journal Article
Akkisetty, B., Dimogiannis, K., Searle, J., Rogers, D., Newton, G. N., & Johnson, L. R. (2022). Enflurane Additive for Sodium Negative Electrodes. ACS Applied Materials and Interfaces, 14(32), 36551-36556. https://doi.org/10.1021/acsami.2c06502

Development of sodium anodes, both hard carbon (HC) and metallic, is dependent on the discovery of electrolyte formations and additives able to stabilize the interphase and support Na+ transport. Halogen salt additives are known to lower the energy b... Read More about Enflurane Additive for Sodium Negative Electrodes.

Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge (2022)
Journal Article
Jovanov, Z. P., Lutz, L., Lozano, J. G., Holc, C., Gao, X., Grimaud, A., …Bruce, P. G. (2022). Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge. Batteries & Supercaps, Article e202200055. https://doi.org/10.1002/batt.202200055

The sodium-air battery offers a sustainable, high-energy alternative to lithium-ion batteries. Discharge in the cell containing glyme-based electrolytes can lead to formation of large cubic NaO2 particles via a solution-precipitation mechanism. While... Read More about Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge.

Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery (2022)
Journal Article
Dong, S., Yang, S., Chen, Y., Kuss, C., Cui, G., Johnson, L. R., …Bruce, P. G. (2022). Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 6(1), 185-192. https://doi.org/10.1016/j.joule.2021.12.012

Investigation of lithium-oxygen cells on discharge using a mixture of 16O16O and 18O18O gases, showed that O–O bond cleavage occurs during disproportionation of LiO2 to O2 and Li2O2, detected by the presence of isotopic 16O18O. The formation of singl... Read More about Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery.

Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes (2022)
Journal Article
Jordan, J. W., Cameron, J. M., Lowe, G. A., Rance, G. A., Fung, K. L. Y., Johnson, L. R., …Newton, G. N. (2022). Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angewandte Chemie, 134(8), Article e202115619. https://doi.org/10.1002/ange.202115619

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-... Read More about Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes.

Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes (2022)
Journal Article
Jordan, J. W., Cameron, J. M., Lowe, G. A., Rance, G. A., Fung, K. L. Y., Johnson, L. R., …Newton, G. N. (2022). Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angewandte Chemie International Edition, 61(8), Article e202115619. https://doi.org/10.1002/anie.202115619

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-... Read More about Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes.

Electrochemistry of redox-active molecules confined within narrow carbon nanotubes (2021)
Journal Article
Jordan, J. W., Townsend, W. J. V., Johnson, L. R., Walsh, D. A., Newton, G. N., & Khlobystov, A. N. (2021). Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chemical Society Reviews, 50(19), 10895-10916. https://doi.org/10.1039/d1cs00478f

Confinement of molecules within nanocontainers can be a powerful tool for controlling the states of guest-molecules, tuning properties of host-nanocontainers and triggering the emergence of synergistic properties within the host–guest systems. Among... Read More about Electrochemistry of redox-active molecules confined within narrow carbon nanotubes.

Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes (2021)
Journal Article
Holc, C., Dimogiannis, K., Hopkinson, E., & Johnson, L. R. (2021). Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes. ACS Applied Materials and Interfaces, 13(25), 29708-29713. https://doi.org/10.1021/acsami.1c06130

Magnesium (Mg) batteries are a potential beyond lithium-ion technology but currently suffer from poor cycling performance, partly due to the interphase formed when magnesium electrodes react with electrolytes. The use of magnesium bis(trifluoromethan... Read More about Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes.

Molecular redox species for next-generation batteries (2021)
Journal Article
Cameron, J. M., Holc, C., Kibler, A. J., Peake, C. L., Walsh, D. A., Newton, G. N., & Johnson, L. R. (2021). Molecular redox species for next-generation batteries. Chemical Society Reviews, 50(10), 5863-5883. https://doi.org/10.1039/d0cs01507e

This Tutorial Review describes how the development of dissolved redox-active molecules is beginning to unlock the potential of three of the most promising ‘next-generation’ battery technologies – lithium–air, lithium–sulfur and redox-flow batteries.... Read More about Molecular redox species for next-generation batteries.

2021 roadmap on lithium sulfur batteries (2021)
Journal Article
Robinson, J. B., Xi, K., Kumar, R. V., Ferrari, A. C., Au, H., Titirici, M.-M., …Shearing, P. R. (2021). 2021 roadmap on lithium sulfur batteries. Journal of Physics: Energy, 3(3), Article 031501. https://doi.org/10.1088/2515-7655/abdb9a

Batteries that extend performance beyond the intrinsic limits of Li-ion batteries are among the most important developments required to continue the revolution promised by electrochemical devices. Of these next-generation batteries, lithium sulfur (L... Read More about 2021 roadmap on lithium sulfur batteries.

The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte (2019)
Journal Article
Liu, J., Gao, X., Hartley, G. O., Rees, G. J., Gong, C., Richter, F. H., …Bruce, P. G. (2020). The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 4(1), 101-108. https://doi.org/10.1016/j.joule.2019.10.001

An advantageous solid electrolyte/liquid electrolyte interface is crucial for the implementation of a protected lithium anode in liquid electrolyte cells. Li6.5La3Zr1.5Ta0.5O12 (LLZTO) garnet electrolytes are among the few solid electrolytes that are... Read More about The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte.