Skip to main content

Research Repository

Advanced Search

All Outputs (30)

Comparison of the ligand‐binding properties of fluorescent VEGF‐A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET (2019)
Journal Article
Peach, C. J., Kilpatrick, L. E., Woolard, J., & Hill, S. J. (2019). Comparison of the ligand‐binding properties of fluorescent VEGF‐A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET. British Journal of Pharmacology, 176(17), 3220-3235. https://doi.org/10.1111/bph.14755

Background and Purpose: Vascular Endothelial Growth Factor A (VEGF-A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165a to NanoLuciferase-tagged VEGF Receptor 2 (VEGFR2) in living cells is that... Read More about Comparison of the ligand‐binding properties of fluorescent VEGF‐A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET.

Complex formation between VEGFR2 and the β2-adrenoceptor (2019)
Journal Article
Kilpatrick, L. E., Alcobia, D. C., White, C. W., Peach, C. J., Glenn, J. R., Zimmerman, K., Kondrashov, A., Pfleger, K. D., Friedman Ohana, R., Robers, M. B., Wood, K. V., Sloan, E. K., Woolard, J., & Hill, S. J. (2019). Complex formation between VEGFR2 and the β2-adrenoceptor. Cell Chemical Biology, 26(6), 830-841.e9. https://doi.org/10.1016/j.chembiol.2019.02.014

Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid... Read More about Complex formation between VEGFR2 and the β2-adrenoceptor.

Binding kinetics of ligands acting at GPCRs (2019)
Journal Article
Sykes, D. A., Stoddart, L. A., Kilpatrick, L. E., & Hill, S. J. (2019). Binding kinetics of ligands acting at GPCRs. Molecular and Cellular Endocrinology, 485, 9-19. https://doi.org/10.1016/j.mce.2019.01.018

The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowled... Read More about Binding kinetics of ligands acting at GPCRs.

Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells (2018)
Journal Article
Peach, C. J., Kilpatrick, L. E., Friedman-Ohana, R., Zimmerman, K., Robers, M. B., Wood, K. V., Woolard, J., & Hill, S. J. (2018). Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells. Cell Chemical Biology, 25(10), 1208-1218.e5. https://doi.org/10.1016/j.chembiol.2018.06.012

© 2018 The Author(s) Fluorescent VEGF-A isoforms have been evaluated for their ability to discriminate between VEGFR2 and NRP1 in real-time ligand binding studies in live cells using BRET. To enable this, we synthesized single-site (N-terminal cystei... Read More about Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells.

Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2 (2018)
Journal Article
Peach, C., Mignone, V., Arruda, M., Alcobia, D., Hill, S., Kilpatrick, L., & Woolard, J. (2018). Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. International Journal of Molecular Sciences, 19(4), Article 1264. https://doi.org/10.3390/ijms19041264

Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via... Read More about Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2.

Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes (2017)
Journal Article
Kilpatrick, L. E., Friedman-Ohana, R., Alcobia, D. C., Riching, K., Peach, C. J., Wheal, A. J., Briddon, S. J., Robers, M. B., Zimmerman, K., Machleidt, T., Wood, K. V., Woolard, J., & Hill, S. J. (2017). Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochemical Pharmacology, 136, 62-75. https://doi.org/10.1016/j.bcp.2017.04.006

© 2017 The Authors Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF165a-TMR) labeled on a single cyste... Read More about Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes.

The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors (2016)
Journal Article
Kilpatrick, L. E., & Hill, S. J. (in press). The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochemical Society Transactions, 44(2), https://doi.org/10.1042/BST20150285

The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence corr... Read More about The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors.

A G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers (2015)
Journal Article
Kilpatrick, L. E., Humphrys, L. J., & Holliday, N. D. (in press). A G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers. Molecular Pharmacology, 87(4), https://doi.org/10.1124/mol.114.095356

The ability of G protein-coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-ta... Read More about A G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers.

Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism (2014)
Journal Article
Corriden, R., Kilpatrick, L. E., Kellam, B., Briddon, S. J., & Hill, S. J. (2014). Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB Journal, 28(10), 4211-4222. https://doi.org/10.1096/fj.13-247270

© The Author(s). In our previous work, using a fluorescent adenosine-A3 receptor (A3AR) agonist and fluorescence correlation spectroscopy (FCS), we demonstrated highaffinity labeling of the active receptor (R∗) conformation. In the current study, we... Read More about Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism.

Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors (2012)
Journal Article
Kilpatrick, L. E., Briddon, S. J., & Holliday, N. D. (2012). Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(6),

Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating thes... Read More about Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of β-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors.