Skip to main content

Research Repository

Advanced Search

All Outputs (126)

Vehicle incident hot spots identification: An approach for big data (2017)
Presentation / Conference Contribution
Triguero, I., Figueredo, G. P., Mesgarpour, M., Garibaldi, J. M., & John, R. (2017, August). Vehicle incident hot spots identification: An approach for big data. Presented at 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia

In this work we introduce a fast big data approach for road incident hot spot identification using Apache Spark. We implement an existing immuno-inspired mechanism, namely SeleSup, as a series of MapReduce-like operations. SeleSup is composed of a nu... Read More about Vehicle incident hot spots identification: An approach for big data.

An improved game-theoretic approach to uncover overlapping communities (2017)
Journal Article
Sun, H.-L., Ch'ng, E., Yong, X., Garibaldi, J. M., See, S., & Chen, D.-B. (2017). An improved game-theoretic approach to uncover overlapping communities. International Journal of Modern Physics C, 28(8), Article 1750112. https://doi.org/10.1142/S0129183117501121

How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered whe... Read More about An improved game-theoretic approach to uncover overlapping communities.

An Immune-Inspired Technique to Identify Heavy Goods Vehicles Incident Hot Spots (2017)
Journal Article
Figueredo, G. P., Triguero, I., Mesgarpour, M., Maciel Guerra, A., Garibaldi, J. M., & John, R. (2017). An Immune-Inspired Technique to Identify Heavy Goods Vehicles Incident Hot Spots. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(4), 248-258. https://doi.org/10.1109/TETCI.2017.2721960

We report on the adaptation of an immune-inspired instance selection technique to solve a real-world big data problem of determining vehicle incident hot spots. The technique, which is inspired by the Immune System self-regulation mechanism, was orig... Read More about An Immune-Inspired Technique to Identify Heavy Goods Vehicles Incident Hot Spots.

A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing (2017)
Journal Article
Figueredo, G., Todd, I., Negm, O. H., Reps, J., Radford, P., Figueredo, G. P., McDermott, E. M., Drewe, E., Powell, R. J., Bainbridge, S., Hamed, M., Crouch, S., Garibaldi, J., St-Gallay, S., Fairclough, L. C., & Tighe, P. J. (2017). A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing. Pharmacological Research, 125, 188-200. https://doi.org/10.1016/j.phrs.2017.08.012

© 2017 Elsevier Ltd TNF receptor associated periodic syndrome (TRAPS) is an autoinflammatory disease caused by mutations in TNF Receptor 1 (TNFR1). Current therapies for TRAPS are limited and do not target the pro-inflammatory signalling pathways tha... Read More about A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing.

Exploring the use of type-2 fuzzy sets in multi-criteria decision making based on TOPSIS (2017)
Presentation / Conference Contribution
Madi, E., Garibaldi, J. M., & Wagner, C. (2017, July). Exploring the use of type-2 fuzzy sets in multi-criteria decision making based on TOPSIS. Presented at 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017), Naples, Italy

Multi-criteria decision making (MCDM) problems are a well known category of decision making problem that has received much attention in the literature, with a key approach being the Technique for Order Preference by Similarity to Ideal Solution (TOPS... Read More about Exploring the use of type-2 fuzzy sets in multi-criteria decision making based on TOPSIS.

Type-1 and interval type-2 ANFIS: a comparison (2017)
Presentation / Conference Contribution
Chen, C., John, R., Twycross, J., & Garibaldi, J. M. Type-1 and interval type-2 ANFIS: a comparison. Presented at 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017)

In a previous paper, we proposed an extended ANFIS architecture and showed that interval type-2 ANFIS produced larger errors than type-1 ANFIS on the well-known IRIS classification problem. In this paper, more experiments on both synthetic and real-w... Read More about Type-1 and interval type-2 ANFIS: a comparison.

A new dynamic approach for non-singleton fuzzification in noisy time-series prediction (2017)
Presentation / Conference Contribution
Pourabdollah, A., John, R., & Garibaldi, J. M. A new dynamic approach for non-singleton fuzzification in noisy time-series prediction. Presented at 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

Non-singleton fuzzification is used to model uncertain (e.g. noisy) inputs within fuzzy logic systems. In the standard approach, assuming the fuzzification type is known, the observed [noisy] input is usually considered to be the core of the input fu... Read More about A new dynamic approach for non-singleton fuzzification in noisy time-series prediction.

Similarity-based non-singleton fuzzy logic control for improved performance in UAVs (2017)
Presentation / Conference Contribution
Fu, C., Sarabakha, A., Kayacan, E., Wagner, C., John, R., & Garibaldi, J. M. (2017, July). Similarity-based non-singleton fuzzy logic control for improved performance in UAVs. Presented at 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy

© 2017 IEEE. As non-singleton fuzzy logic controllers (NSFLCs) are capable of capturing input uncertainties, they have been effectively used to control and navigate unmanned aerial vehicles (UAVs) recently. To further enhance the capability to handle... Read More about Similarity-based non-singleton fuzzy logic control for improved performance in UAVs.

A Direct Approach for Determining the Switch Points in the Karnik–Mendel Algorithm (2017)
Journal Article
Chen, C., John, R., Twycross, J., & Garibaldi, J. M. (2018). A Direct Approach for Determining the Switch Points in the Karnik–Mendel Algorithm. IEEE Transactions on Fuzzy Systems, 26(2), 1079-1085. https://doi.org/10.1109/tfuzz.2017.2699168

The Karnik-Mendel algorithm is used to compute the centroid of interval type-2 fuzzy sets, determining the switch points needed for the lower and upper bounds of the centroid, through an iterative process. It is commonly acknowledged that there is n... Read More about A Direct Approach for Determining the Switch Points in the Karnik–Mendel Algorithm.

Can machine-learning improve cardiovascular risk prediction using routine clinical data (2017)
Journal Article
Weng, S. F., Reps, J. M., Kai, J., Garibaldi, J. M., & Quereshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data. PLoS ONE, 12(4), Article e0174944. https://doi.org/10.1371/journal.pone.0174944

Background
Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiti... Read More about Can machine-learning improve cardiovascular risk prediction using routine clinical data.

A new accuracy measure based on bounded relative error for time series forecasting (2017)
Journal Article
Chen, C., Twycross, J., & Garibaldi, J. M. (2017). A new accuracy measure based on bounded relative error for time series forecasting. PLoS ONE, 12(3), Article e0174202. https://doi.org/10.1371/journal.pone.0174202

Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising c... Read More about A new accuracy measure based on bounded relative error for time series forecasting.

Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets (2017)
Journal Article
Zhang, J.-H., Xia, J.-J., Garibaldi, J. M., Groumpos, P. P., & Wang, R.-B. (2017). Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets. Computer Methods and Programs in Biomedicine, 144, https://doi.org/10.1016/j.cmpb.2017.03.016

Background and objective: In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must b... Read More about Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.

Validation of a quantifier-based fuzzy classification system for breast cancer patients on external independent cohorts (2016)
Presentation / Conference Contribution
Soria, D., & Garibaldi, J. M. Validation of a quantifier-based fuzzy classification system for breast cancer patients on external independent cohorts. Presented at International Conference on Machine Learning and Applications

Recent studies in breast cancer domains have identified seven distinct clinical phenotypes (groups) using immunohistochemical analysis and a variety of unsupervised learning techniques. Consensus among the clustering algorithms has been used to categ... Read More about Validation of a quantifier-based fuzzy classification system for breast cancer patients on external independent cohorts.

A similarity-based inference engine for non-singleton fuzzy logic systems (2016)
Presentation / Conference Contribution
Wagner, C., Pourabdollah, A., McCulloch, J., John, R., & Garibaldi, J. M. (2016, July). A similarity-based inference engine for non-singleton fuzzy logic systems. Presented at 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2016), Vancouver, BC, Canada

In non-singleton fuzzy logic systems (NSFLSs) input uncertainties are modelled with input fuzzy sets in order to capture input uncertainty such as sensor noise. The performance of NSFLSs in handling such uncertainties depends both on the actual input... Read More about A similarity-based inference engine for non-singleton fuzzy logic systems.

A comparative study on the control of Quadcopter UAVs by using singleton and non-singleton fuzzy logic controllers (2016)
Presentation / Conference Contribution
Fu, C., Sarabakha, A., Kayacan, E., Wagner, C., John, R., & Garibaldi, J. M. A comparative study on the control of Quadcopter UAVs by using singleton and non-singleton fuzzy logic controllers. Presented at 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2016)

Fuzzy logic controllers (FLCs) have extensively been used for the autonomous control and guidance of unmanned aerial vehicles (UAVs) due to their capability of handling uncertainties and delivering adequate control without the need for a precise, mat... Read More about A comparative study on the control of Quadcopter UAVs by using singleton and non-singleton fuzzy logic controllers.

On Using Genetic Algorithm for Initialising Semi-supervised Fuzzy c-Means Clustering (2016)
Journal Article
Lai, D. T. C., & Garibaldi, J. M. (2017). On Using Genetic Algorithm for Initialising Semi-supervised Fuzzy c-Means Clustering. Advances in Intelligent Systems and Computing, 532, 3-14. https://doi.org/10.1007/978-3-319-48517-1_1

In a previous work, suitable initialisation techniques were incorporated with semi-supervised Fuzzy c-Means clustering (ssFCM) to improve clustering results on a trial and error basis. In this work, we present a single fully-automatic version of an e... Read More about On Using Genetic Algorithm for Initialising Semi-supervised Fuzzy c-Means Clustering.

Modelling cyber-security experts' decision making processes using aggregation operators (2016)
Journal Article
Miller, S., Wagner, C., Aickelin, U., & Garibaldi, J. M. (2016). Modelling cyber-security experts' decision making processes using aggregation operators. Computers and Security, 62, 229-245. https://doi.org/10.1016/j.cose.2016.08.001

An important role carried out by cyber-security experts is the assessment of proposed computer systems, during their design stage. This task is fraught with difficulties and uncertainty, making the knowledge provided by human experts essential for su... Read More about Modelling cyber-security experts' decision making processes using aggregation operators.

An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models (2016)
Presentation / Conference Contribution
Chen, C., John, R., Twycross, J., & Garibaldi, J. M. An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models. Presented at 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2016)

In this paper, an extended ANFIS architecture is proposed. By incorporating an extra layer for the fuzzification process, the extended architecture is able to fit both type-1 and interval type-2 models. The learning properties of the proposed archite... Read More about An extended ANFIS architecture and its learning properties for type-1 and interval type-2 models.

An exploration of issues and limitations in current methods of TOPSIS and fuzzy TOPSIS (2016)
Presentation / Conference Contribution
Madi, E., Garibaldi, J. M., & Wagner, C. An exploration of issues and limitations in current methods of TOPSIS and fuzzy TOPSIS. Presented at 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)

Decision making is an important process for organizations. Common practice involves evaluation of prioritized alternatives based on a given set of criteria. These criteria conflict with each other and commonly no solution can satisfy all criteria sim... Read More about An exploration of issues and limitations in current methods of TOPSIS and fuzzy TOPSIS.

KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer: a targeted molecular approach (2016)
Journal Article
Green, W. J., Ball, G., Hulman, G., Johnson, C., Van Schalwyk, G., Ratan, H. L., Soria, D., Garibaldi, J. M., Parkinson, R., Hulman, J., Rees, R., & Powe, D. G. (in press). KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer: a targeted molecular approach. British Journal of Cancer, https://doi.org/10.1038/bjc.2016.169

Background:There remains a need to identify and validate biomarkers for predicting prostate cancer (CaP) outcomes using robust and routinely available pathology techniques to identify men at most risk of premature death due to prostate cancer. Previo... Read More about KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer: a targeted molecular approach.