Skip to main content

Research Repository

Advanced Search

All Outputs (5)

A Novel Quality Control Algorithm for Medical Image Segmentation Based on Fuzzy Uncertainty (2022)
Journal Article
Lin, Q., Chen, X., Chen, C., & Garibaldi, J. M. (2022). A Novel Quality Control Algorithm for Medical Image Segmentation Based on Fuzzy Uncertainty. IEEE Transactions on Fuzzy Systems, 31(8), 2532-2544. https://doi.org/10.1109/tfuzz.2022.3228332

Deep learning methods have achieved an excellent performance in medical image segmentation. However, the practical application of deep learning-based segmentation models is limited in clinical settings due to the lack of reliable information about th... Read More about A Novel Quality Control Algorithm for Medical Image Segmentation Based on Fuzzy Uncertainty.

Dynamic early warning scores for predicting clinical deterioration in patients with respiratory disease (2022)
Journal Article
Gonem, S., Taylor, A., Figueredo, G., Forster, S., Quinlan, P., Garibaldi, J. M., McKeever, T. M., & Shaw, D. (2022). Dynamic early warning scores for predicting clinical deterioration in patients with respiratory disease. Respiratory Research, 23, Article 203. https://doi.org/10.1186/s12931-022-02130-6

Background: The National Early Warning Score-2 (NEWS-2) is used to detect patient deterioration in UK hospitals but fails to take account of the detailed granularity or temporal trends in clinical observations. We used data-driven methods to develop... Read More about Dynamic early warning scores for predicting clinical deterioration in patients with respiratory disease.

Counterfactual rule generation for fuzzy rule-based classification systems (2022)
Presentation / Conference Contribution
Zhang, T., Wagner, C., & Garibaldi, J. M. (2022, July). Counterfactual rule generation for fuzzy rule-based classification systems. Presented at 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua, Italy

EXplainable Artificial Intelligence (XAI) is of in-creasing importance as researchers and practitioners seek better transparency and verifiability of AI systems. Mamdani fuzzy systems can provide explanations based on their linguistic rules, and thus... Read More about Counterfactual rule generation for fuzzy rule-based classification systems.

LMISA: A Lightweight Multi-modality Image Segmentation Network via Domain Adaptation using Gradient Magnitude and Shape Constraint (2022)
Journal Article
Jafari, M., Francis, S., Garibaldi, J. M., & Chen, X. (2022). LMISA: A Lightweight Multi-modality Image Segmentation Network via Domain Adaptation using Gradient Magnitude and Shape Constraint. Medical Image Analysis, 81, Article 102536. https://doi.org/10.1016/j.media.2022.102536

In medical image segmentation, supervised machine learning models trained using one image modality (e.g. computed tomography (CT)) are often prone to failure when applied to another image modality (e.g. magnetic resonance imaging (MRI)) even for the... Read More about LMISA: A Lightweight Multi-modality Image Segmentation Network via Domain Adaptation using Gradient Magnitude and Shape Constraint.

Lessons learned from the COVID-19 pandemic about sample access for research in the UK (2022)
Journal Article
Mai Sims, J., Lawrence, E., Glazer, K., Gander, A., Fuller, B., Garibaldi, J., …Quinlan, P. R. (2022). Lessons learned from the COVID-19 pandemic about sample access for research in the UK. BMJ Open, 12(4), Article e047309. https://doi.org/10.1136/bmjopen-2020-047309

Objective Annotated clinical samples taken from patients are a foundation of translational medical research and give mechanistic insight into drug trials. Prior research by the Tissue Directory and Coordination Centre (TDCC) indicated that researcher... Read More about Lessons learned from the COVID-19 pandemic about sample access for research in the UK.