Skip to main content

Research Repository

Advanced Search

All Outputs (21)

Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study (2024)
Journal Article
Kalenderski, K., Dubern, J.-F., Lewis-Lloyd, C., Jeffery, N., Heeb, S., Irvine, D. J., …Williams, P. (2024). Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study. Journal of Urology Open PLus, 2(1), Article e00005. https://doi.org/10.1097/JU9.0000000000000097

Purpose: Biofilm formation and biomineralization on urinary catheters may cause severe complications including infection and obstruction. Here, we describe an in vitro evaluation and prospective pilot clinical study of a silicone catheter coated with... Read More about Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study.

Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections (2024)
Journal Article
Soukarieh, F., Mashabi, A., Richardson, W., Oton, E. V., Romero, M., Dubern, J., …Cámara, M. (2024). Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections. Journal of Medicinal Chemistry, 67(2), 1008-1023. https://doi.org/10.1021/acs.jmedchem.3c00973

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to c... Read More about Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections.

Growth rate and nutrient limitation as key drivers of extracellular quorum sensing signal molecule accumulation in Pseudomonas aeruginosa (2023)
Journal Article
Dubern, J.-F., Halliday, N., Cámara, M., Winzer, K., Barrett, D. A., Hardie, K. R., & Williams, P. (2023). Growth rate and nutrient limitation as key drivers of extracellular quorum sensing signal molecule accumulation in Pseudomonas aeruginosa. Microbiology, 169(4), Article 001316. https://doi.org/10.1099/mic.0.001316

In Pseudomonas aeruginosa, quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pqs systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of N-acylhomoserine lac... Read More about Growth rate and nutrient limitation as key drivers of extracellular quorum sensing signal molecule accumulation in Pseudomonas aeruginosa.

Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation (2023)
Journal Article
Dubern, J. F., Hook, A. L., Carabelli, A. M., Chang, C. Y., Lewis-Lloyd, C. A., Luckett, J. C., …Williams, P. (2023). Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Science Advances, 9(4), Article eadd7474. https://doi.org/10.1126/sciadv.add7474

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming... Read More about Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.

Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials (2023)
Journal Article
Cuzzucoli Crucitti, V., Ilchev, A., Moore, J. C., Fowler, H. R., Dubern, J., Sanni, O., …Irvine, D. J. (2023). Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules, https://doi.org/10.1021/acs.biomac.2c00721

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomon... Read More about Predictive Molecular Design and Structure–Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials.

ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa (2022)
Journal Article
Camara, M., Dubern, J., Romero, M., Mai-Prochnow, A., Messina, M., Trampari, E., …Heeb, S. (2022). ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa. npj Biofilms and Microbiomes, 8, Article 64. https://doi.org/10.1038/s41522-022-00325-9

Pseudomonas aeruginosa uses multiple protein regulators that work in tandem to control the production of a wide range of virulence factors and facilitate rapid adaptation to diverse environmental conditions. In this opportunistic pathogen, ToxR was k... Read More about ToxR is a c-di-GMP binding protein that modulates surface-associated behaviour in Pseudomonas aeruginosa.

A Pseudomonas aeruginosa PQS quorum-sensing system inhibitor with anti-staphylococcal activity sensitizes polymicrobial biofilms to tobramycin (2022)
Journal Article
Murray, E. J., Dubern, J., Chan, W. C., Chhabra, S. R., & Williams, P. (2022). A Pseudomonas aeruginosa PQS quorum-sensing system inhibitor with anti-staphylococcal activity sensitizes polymicrobial biofilms to tobramycin. Cell Chemical Biology, 29(7), 1187-1199.e6. https://doi.org/10.1016/j.chembiol.2022.02.007

As single- and mixed-species biofilms, Staphylococcus aureus and Pseudomonas aeruginosa cause difficult-to-eradicate chronic infections. In P. aeruginosa, pseudomonas quinolone (PQS)-dependent quorum sensing regulates virulence and biofilm developmen... Read More about A Pseudomonas aeruginosa PQS quorum-sensing system inhibitor with anti-staphylococcal activity sensitizes polymicrobial biofilms to tobramycin.

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices (2021)
Journal Article
He, Y., Abdi, M., Trindade, G. F., Begines, B., Dubern, J. F., Prina, E., …Wildman, R. D. (2021). Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. Advanced Science, 8(15), Article 2100249. https://doi.org/10.1002/advs.202100249

As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-bas... Read More about Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices.

NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target (2021)
Journal Article
Fenn, S., Dubern, J.-F., Cigana, C., De Simone, M., Lazenby, J., Juhas, M., …Cámara, M. (2021). NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target. mBio, 12(2), Article e00207-21. https://doi.org/10.1128/mbio.00207-21

The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipelin... Read More about NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target.

AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii (2021)
Journal Article
López-Martín, M., Dubern, J.-F., Alexander, M. R., & Williams, P. (2021). AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii. Journal of Bacteriology, 203(8), Article e00635-20. https://doi.org/10.1128/jb.00635-20

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM... Read More about AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii.

Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development (2020)
Journal Article
Carabelli, A. M., Isgró, M., Sanni, O., Figueredo, G. P., Winkler, D. A., Burroughs, L., …Alexander, M. R. (2020). Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development. ACS Applied Bio Materials, 3(12), 8471–8480. https://doi.org/10.1021/acsabm.0c00849

© 2020 American Chemical Society. Bacterial biofilms exhibit up to 1000 times greater resistance to antibiotic or host immune clearance than planktonic cells. Pseudomonas aeruginosa produces retractable type IV pili (T4P) that facilitate twitching mo... Read More about Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development.

Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants (2020)
Journal Article
Dundas, A. A., Cuzzucoli Crucitti, V., Haas, S., Dubern, J., Latif, A., Romero, M., …Irvine, D. J. (2020). Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants. Advanced Functional Materials, 30(36), Article 2001821. https://doi.org/10.1002/adfm.202001821

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formatio... Read More about Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants.

Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections (2020)
Journal Article
Kurmoo, Y., Hook, A. L., Harvey, D., Dubern, J.-F., Williams, P., Morgan, S. P., …Alexander, M. R. (2020). Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomaterials Science, 8(5), 1464-1477. https://doi.org/10.1039/c9bm00875f

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre se... Read More about Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators (2019)
Journal Article
Hook, A. L., Flewellen, J. L., Dubern, J.-F., Carabelli, A., Zald, I. M., Berry, R. M., …Alexander, M. R. (2019). Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems, 4(5), Article e00390-19. https://doi.org/10.1128/mSystems.00390-19

Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodolo... Read More about Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators.

Contribution of the alkylquinolone quorum sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells. (2018)
Journal Article
Liu, Y.-C., Hussain, F., Negm, O., Pavia, A., Halliday, N., Frédéric Dubern, J.-., …Martínez-Pomares, L. (2018). Contribution of the alkylquinolone quorum sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells. Frontiers in Microbiology, 9, Article 3018. https://doi.org/10.3389/fmicb.2018.03018

Pseudomonas aeruginosa causes infections in patients with compromised epithelial 32 barrier function. Multiple virulence factors produced by P. aeruginosa are controlled 33 by quorum sensing (QS) via 2-alkyl-4(1H)-quinolone (AQ) signal molecules. Her... Read More about Contribution of the alkylquinolone quorum sensing system to the interaction of Pseudomonas aeruginosa with bronchial epithelial cells..

In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa (2018)
Journal Article
Soukarieh, F., Vico Oton, E., Dubern, J.-F., Gomes, J., Halliday, N., de Pilar Crespo, M., …Cámara, M. (2018). In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa. Molecules, 23(2), 1-15. https://doi.org/10.3390/molecules23020257

Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance. The P. aeruginosa Pseudomonas Quinolone System (pqs) quorum sens... Read More about In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa.

Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa (2016)
Journal Article
Rampioni, G., Falcone, M., Heeb, S., Frangipani, E., Fletcher, M. P., Dubern, J.-F., …Williams, P. (2016). Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa. PLoS Pathogens, 12(11), e1006029. https://doi.org/10.1371/journal.ppat.1006029

The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by eac... Read More about Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa.

The fitness burden imposed by synthesising quorum sensing signals (2016)
Journal Article
Ruparell, A., Dubern, J.-F., Ortori, C. A., Harrison, F., Halliday, N., Emtage, A., …Hardie, K. R. (2016). The fitness burden imposed by synthesising quorum sensing signals. Scientific Reports, 6, Article 33101. https://doi.org/10.1038/srep33101

It is now well established that bacterial populations utilize cell-to-cell signaling (quorum-sensing, QS) to control the production of public goods and other co-operative behaviours. Evolutionary theory predicts that both the cost of signal productio... Read More about The fitness burden imposed by synthesising quorum sensing signals.