Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Fuzzy Hot Spot Identification for Big Data: An Initial Approach (2019)
Presentation / Conference Contribution
Triguero, I., Tickle, R., Figueredo, G. P., Mesgarpour, M., Ozcan, E., & John, R. I. (2019, June). Fuzzy Hot Spot Identification for Big Data: An Initial Approach. Presented at 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA

Hot spot identification problems are present across a wide range of areas, such as transportation, health care and energy. Hot spots are locations where a certain type of event occurs with high frequency. A recent big data approach is capable of iden... Read More about Fuzzy Hot Spot Identification for Big Data: An Initial Approach.

PAS3-HSID: a Dynamic Bio-Inspired Approach for Real-Time Hot Spot Identification in Data Streams (2019)
Journal Article
Tickle, R., Triguero, I., Figueredo, G. P., Mesgarpour, M., & John, R. I. (2019). PAS3-HSID: a Dynamic Bio-Inspired Approach for Real-Time Hot Spot Identification in Data Streams. Cognitive Computation, 11(3), 434–458. https://doi.org/10.1007/s12559-019-09638-y

© 2019, Springer Science+Business Media, LLC, part of Springer Nature. Hot spot identification is a very relevant problem in a wide variety of areas such as health care, energy or transportation. A hot spot is defined as a region of high likelihood o... Read More about PAS3-HSID: a Dynamic Bio-Inspired Approach for Real-Time Hot Spot Identification in Data Streams.