Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics (2024)
Journal Article
Mirams, G. R., Clerx, M., Whittaker, D. G., & Lei, C. L. (2024). Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics. Mathematics in Medical and Life Sciences, 2024(1), Article 2375494. https://doi.org/10.1080/29937574.2024.2375494

Voltage-clamp waveforms are imposed in the patch-clamp electrophysiology technique to provoke ion currents, the particular waveform that is used is known as the “voltage-clamp protocol”. Designing protocols to probe and quantify how gating for a part... Read More about Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics.

Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics (2024)
Journal Article
Mirams, G. R., Clerx, M., Whittaker, D. G., & Lei, C. L. (2024). Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics. Mathematics in Medical and Life Sciences, 1(1), Article 2375494. https://doi.org/10.1080/29937574.2024.2375494

Voltage-clamp waveforms are imposed in the patch-clamp electrophysiology technique to provoke ion currents, the particular waveform that is used is known as the “voltage-clamp protocol”. Designing protocols to probe and quantify how gating for a part... Read More about Optimal experimental designs for characterising ion channel gating by filling the phase-voltage space of model dynamics.

Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies (2024)
Journal Article
Grandits, T., Augustin, C. M., Haase, G., Jost, N., Mirams, G. R., Niederer, S. A., …Jung, A. (2024). Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies. eLife, 12, Article RP91911. https://doi.org/10.7554/elife.91911.3

Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimen... Read More about Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies.

Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation (2024)
Journal Article
Ayagama, T., Charles, P. D., Bose, S. J., Boland, B., Priestman, D. A., Aston, D., …Burton, R. A. (2024). Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience, 27(6), Article 109609. https://doi.org/10.1016/j.isci.2024.109609

Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling.... Read More about Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation.

Understanding the impact of numerical solvers on inference for differential equation models (2024)
Journal Article
Creswell, R., Shepherd, K. M., Lambert, B., Mirams, G. R., Lei, C. L., Tavener, S., Robinson, M., & Gavaghan, D. J. (2024). Understanding the impact of numerical solvers on inference for differential equation models. Journal of the Royal Society, Interface, 21(212), Article 20230369. https://doi.org/10.1098/rsif.2023.0369

Most ordinary differential equation (ODE) models used to describe biological or physical systems must be solved approximately using numerical methods. Perniciously, even those solvers that seem sufficiently accurate for the forward problem, i.e. for... Read More about Understanding the impact of numerical solvers on inference for differential equation models.

Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes (2024)
Journal Article
Raniga, K., Nasir, A., Vo, N. T., Vaidyanathan, R., Dickerson, S., Hilcove, S., Mosqueira, D., Mirams, G. R., Clements, P., Hicks, R., Pointon, A., Stebbeds, W., Francis, J., & Denning, C. (2024). Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 31(3), 292-311. https://doi.org/10.1016/j.stem.2024.01.007

Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the... Read More about Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes.