Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery (2019)
Journal Article
Breen, A. F., Scurr, D., Cassioli, M. L., Wells, G., Thomas, N. R., Zhang, J., …Bradshaw, T. D. (2019). Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery. International Journal of Nanomedicine, 14, 9525-9534. https://doi.org/10.2147/IJN.S226293

Introduction: Advancment of novel anticancer drugs into clinic is frequently halted by their lack of solubility, reduced stability under physiological conditions, and non-specific uptake by normal tissues, causing systemic toxicity. Their progress to... Read More about Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery.

Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment (2019)
Journal Article
Al-Mayahy, M. H., Sabri, A. H., Rutland, C. S., Holmes, A., McKenna, J., Marlow, M., & Scurr, D. J. (2019). Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. European Journal of Pharmaceutics and Biopharmaceutics, 139, 33-43. https://doi.org/10.1016/j.ejpb.2019.02.006

Basal cell carcinoma (BCC) is the most common skin cancer in humans. Topical treatment with imiquimod provides a non-invasive, self-administered treatment with relatively low treatment cost. Despite displaying excellent efficacy, imiquimod is only li... Read More about Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment.

Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly (2019)
Journal Article
Di Palma, G., Kotowska, A. M., Hart, L. R., Scurr, D. J., Rawson, F. J., Tommasone, S., & Mendes, P. M. (2019). Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly. ACS Applied Materials and Interfaces, 11(9), 8937-8944. https://doi.org/10.1021/acsami.9b00927

The ability to design surfaces with reversible, high-affinity protein binding sites represents a significant step forward in the advancement of analytical methods for diverse biochemical and biomedical applications. Herein, we report a dynamic supram... Read More about Reversible, High-Affinity Surface Capturing of Proteins Directed by Supramolecular Assembly.