Skip to main content

Research Repository

Advanced Search

All Outputs (53)

Carbon Emission Analysis of Electrical Machines (2021)
Presentation / Conference Contribution
Zhang, X., Xu, Z., Gerada, C., & Gerada, D. (2021). Carbon Emission Analysis of Electrical Machines. In 2021 24th International Conference on Electrical Machines and Systems (ICEMS) (1678-1683). https://doi.org/10.23919/ICEMS52562.2021.9634279

The industry places increased importance on carbon reduction. Many are focused on lowering the fuel consumption of electrical machines, however, carbon emissions from the acquisition of raw materials and the energy consumption of manufacturing proces... Read More about Carbon Emission Analysis of Electrical Machines.

A critical review on thermal management technologies for motors in electric cars (2021)
Journal Article
Wang, X., Li, B., Gerada, D., Huang, K., Stone, I., Worrall, S., & Yan, Y. (2022). A critical review on thermal management technologies for motors in electric cars. Applied Thermal Engineering, 201(Part A), Article 117758. https://doi.org/10.1016/j.applthermaleng.2021.117758

The development of electric cars has well been regarded as a major solution for tackling the challenges of carbon-neutrality faced by the modern communities. Electric motor is certainly the core and most important components of an electric car, and t... Read More about A critical review on thermal management technologies for motors in electric cars.

Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling (2021)
Journal Article
Zhang, F., Gerada, D., Xu, Z., Zhang, X., Zhang, H., Gerada, C., …Degano, M. (2022). Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling. IEEE Transactions on Transportation Electrification, 8(1), 312-324. https://doi.org/10.1109/TTE.2021.3106819

Thermal management is often considered a bottleneck in the pursuit of the next-generation electrical machines for electrified transportation with a step change in power density. Slot-channel cooling is considered to be an effective cooling technique,... Read More about Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling.

Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits (2021)
Journal Article
Zhang, F., Gerada, D., Xu, Z., Tighe, C., Zhang, H., Yan, L., & Gerada, C. (2021). Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits. IEEE Transactions on Transportation Electrification, 7(4), 2927-2938. https://doi.org/10.1109/tte.2021.3085822

The slot thermal condition is critical for thermal management of high-performance electrical machines, due to the high heat losses and poor heat transfer ability within the slot. With a part of the back iron projected radially downward into the slot,... Read More about Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits.

Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles (2020)
Journal Article
Li, B., Kuo, H., Wang, X., Chen, Y., Wang, Y., Gerada, D., …Yan, Y. (2020). Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles. Automotive Innovation, 3(4), 299-316. https://doi.org/10.1007/s42154-020-00124-y

An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques. Currently, explorations of intelligent thermal management and cont... Read More about Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles.

Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines (2020)
Presentation / Conference Contribution
Transi, T., Murataliyev, M., Degano, M., Preci, E., Gerada, D., & Gerada, C. (2020). Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines. . https://doi.org/10.1109/iecon43393.2020.9255237

Nowadays, Interior Permanent Magnet Synchronous Machines (IPMSM) are widely adopted in various sectors such as automotive, railway or public transportation (e- buses, trams, etc.). Among the benefits that these machines present, they offer a number o... Read More about Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines.

Influence of Airgap Length on Performance of High Power PM-Assisted Syn-Rel Machines (2020)
Presentation / Conference Contribution
Zou, T., Gerada, D., Walker, A., Vakil, G., La Rocca, S., La Rocca, A., …Gerada, C. (2020). Influence of Airgap Length on Performance of High Power PM-Assisted Syn-Rel Machines. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE) (1357-1363). https://doi.org/10.1109/ecce44975.2020.9235712

In recent years, synchronous reluctance (Syn-Rel) machines are research hotspots in variable speed motor drives due to their robust rotor structure and wide constant power speed range (CPSR). More practically, when kVA limitation is considered, embed... Read More about Influence of Airgap Length on Performance of High Power PM-Assisted Syn-Rel Machines.

SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network (2020)
Presentation / Conference Contribution
Wang, M., Yang, B., Xu, L., Li, J., Gerada, D., Gu, C., …Li, Y. (2020). SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network. In 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe). https://doi.org/10.23919/epe20ecceeurope43536.2020.9215606

This paper proposed a linear state-space model for a resonant dual active bridge with a tuned capacitor-inductor-capacitor network which is applied to an energy storage system. The proposed model is used for predicting the behavior of the proposed sy... Read More about SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network.

Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple (2020)
Journal Article
Gao, P., Sun, X., Gerada, D., Gerada, C., & Wang, X. (2020). Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple. IET Electric Power Applications, 14(12), 2404-2411. https://doi.org/10.1049/iet-epa.2019.0850

Interior permanent magnet synchronous machines (IPMSMs) with V-shaped permanent magnet (PM) rotors are widely used as traction motors in electric vehicles because of their high torque density and high efficiency. However, the V-shape IPMSMs have the... Read More about Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple.

An Analytical Approach for the Design of Innovative Hairpin Winding Layouts (2020)
Presentation / Conference Contribution
Arzillo, A., Nuzzo, S., Braglia, P., Franceschini, G., Barater, D., Gerada, D., & Gerada, C. (2020). An Analytical Approach for the Design of Innovative Hairpin Winding Layouts. . https://doi.org/10.1109/icem49940.2020.9270927

This work deals with an analytical approach aimed at accurately predicting Joule losses in innovative hairpin winding layouts. While hairpin windings are seeing an everincreasing use in automotive and aerospace applications due to their inherently hi... Read More about An Analytical Approach for the Design of Innovative Hairpin Winding Layouts.

Challenges and Future opportunities of Hairpin Technologies (2020)
Presentation / Conference Contribution
Arzillo, A., Braglia, P., Nuzzo, S., Barater, D., Franceschini, G., Gerada, D., & Gerada, C. (2020). Challenges and Future opportunities of Hairpin Technologies. . https://doi.org/10.1109/ISIE45063.2020.9152417

Hairpin windings are seeing an ever-increasing application and development in electrical machines designed for high power and torque densities. In fact, due to their inherently high fill factor, they are very attractive in applications, such as trans... Read More about Challenges and Future opportunities of Hairpin Technologies.

A Hybrid Computational Tool to Analyze the Performance of Electric Machines with Reduced Content of Permanent Magnet (2020)
Presentation / Conference Contribution
Ram Kumar, R. M., Khowja, M. R., Vakil, G., Gerada, D., Gerada, C., Paciura, K., & Fernandes, B. G. (2020). A Hybrid Computational Tool to Analyze the Performance of Electric Machines with Reduced Content of Permanent Magnet. In 2020 IEEE Transportation Electrification Conference & Expo (ITEC) (340-345). https://doi.org/10.1109/itec48692.2020.9161631

Electric vehicles (EVs) are equipped with interior permanent magnet (IPM) or permanent magnet assisted synchronous reluctance (PM-SynRel) machines because of their superior performance in field weakening region. The effect of saturation is more prono... Read More about A Hybrid Computational Tool to Analyze the Performance of Electric Machines with Reduced Content of Permanent Magnet.

Analytical Model of Modular Spoke-Type Permanent Magnet Machines for In-Wheel Traction Applications (2020)
Journal Article
Zhang, H., Hua, W., Gerada, D., Xu, Z., & Gerada, C. (2020). Analytical Model of Modular Spoke-Type Permanent Magnet Machines for In-Wheel Traction Applications. IEEE Transactions on Energy Conversion, 35(3), 1289-1300. https://doi.org/10.1109/tec.2020.2979886

This paper proposes an analytical model of modular spoke-type permanent magnet (MSTPM) machines based on air-gap field modulation (AFM) theory. Firstly, a fundamental AFM model of open-circuit MSTPM machines is introduced. The open-circuit air-gap fi... Read More about Analytical Model of Modular Spoke-Type Permanent Magnet Machines for In-Wheel Traction Applications.

Sensitivity Analysis of Machine Components Thermal Properties Effects on Winding Temperature (2019)
Presentation / Conference Contribution
Zhang, F., Gerada, D., Xu, Z., Zhang, H., & Gerada, C. (2019). Sensitivity Analysis of Machine Components Thermal Properties Effects on Winding Temperature. In 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). https://doi.org/10.1109/ICEMS.2019.8922095

This paper investigates the sensitivity analysis of winding temperature to key parameters in electrical machine thermal design. With a validated 3D thermal model based on an existing 75kW traction machine for an electric vehicle, the methodology of t... Read More about Sensitivity Analysis of Machine Components Thermal Properties Effects on Winding Temperature.

Enhancing the Torque Density of Conventional PM-SynRel Machine with Hybrid Flux Barrier (2019)
Presentation / Conference Contribution
Kumar, R. M. R., Vakil, G., Gerada, D., Walker, A., La Rocca, S., Al-Ani, M., …Fernandes, B. G. (2019). Enhancing the Torque Density of Conventional PM-SynRel Machine with Hybrid Flux Barrier. In IECON 2019 Proceedings - 45th Annual Conference of the IEEE Industrial Electronics Society (4347-4352). https://doi.org/10.1109/IECON.2019.8926624

Electrical machines with high torque density are required for traction application. Availability of bonded magnets with complex shapes and magnetization pattern can significantly extend the design space of electrical machines. This paper introduces a... Read More about Enhancing the Torque Density of Conventional PM-SynRel Machine with Hybrid Flux Barrier.

Rotor UMP & Mechanical Response in HSPMSM in Typical Running Conditions (2019)
Presentation / Conference Contribution
He, Y.-L., Vakil, G., Zhang, X.-C., Gao, P., Gerada, D., & Gerada, C. (2019). Rotor UMP & Mechanical Response in HSPMSM in Typical Running Conditions. In Proceedings: 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (3878-3883). https://doi.org/10.1109/ECCE.2019.8913180

This paper presents a comprehensive analysis on the rotor unbalanced magnetic pull (UMP) and the consequent mechanical response in 6 typical running conditions in a 20000 rpm high speed permanent magnet synchronous motor (HSPMSM) through finite eleme... Read More about Rotor UMP & Mechanical Response in HSPMSM in Typical Running Conditions.

Equivalent Slot Thermal Conductivity and Back-iron Extension Effects on Machine Cooling (2019)
Presentation / Conference Contribution
Zhang, F., Gerada, D., Xu, Z., Zhang, H., & Gerada, C. (2019). Equivalent Slot Thermal Conductivity and Back-iron Extension Effects on Machine Cooling. In Proceedings of 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). https://doi.org/10.1109/ICEMS.2019.8921725

Back-iron Extension (BIE) is an effective thermal management technique which reduces the winding temperatures by projecting part of the back iron into the center of slot, thereby shortening the heat transfer path between the coil and back iron. Based... Read More about Equivalent Slot Thermal Conductivity and Back-iron Extension Effects on Machine Cooling.

Dual-Pulse Mode Control of a High-Speed Doubly Salient Electromagnetic Machine for Loss Reduction and Speed Range Extension (2019)
Journal Article
Yu, L., Zhang, Z., Bian, Z., Gerada, D., & Gerada, C. (2019). Dual-Pulse Mode Control of a High-Speed Doubly Salient Electromagnetic Machine for Loss Reduction and Speed Range Extension. IEEE Transactions on Industrial Electronics, 67(6), 1-10. https://doi.org/10.1109/tie.2019.2931253

In this paper, a dual-pulse mode control of a high-speed doubly salient electromagnetic machine (DSEM) for efficiency improvement over a wide speed range is investigated and implemented. The dual-pulse mode control method and operation principle are... Read More about Dual-Pulse Mode Control of a High-Speed Doubly Salient Electromagnetic Machine for Loss Reduction and Speed Range Extension.