Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations (2022)
Journal Article
Alvarez, E., Romero-Fernandez, M., Iglesias, D., Martinez-Cuenca, R., Okafor, O., Delorme, A., …Sans, V. (2022). Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 10(7), 2388-2396. https://doi.org/10.1021/acssuschemeng.1c06799

Electrochemical continuous-flow reactors offer a great opportunity for enhanced and sustainable chemical syntheses. Here, we present a novel application of electrochemical continuous-flow oscillatory baffled reactors (ECOBRs) that combines advanced m... Read More about Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations.