Skip to main content

Research Repository

Advanced Search

All Outputs (5)

A computationally efficient method for the prediction of fretting wear in practical engineering applications (2021)
Journal Article
Kong, Y., Bennett, C. J., & Hyde, C. J. (2022). A computationally efficient method for the prediction of fretting wear in practical engineering applications. Tribology International, 165, Article 107317. https://doi.org/10.1016/j.triboint.2021.107317

A method for simulating fretting wear using the Modified Simplex Method for a contact solution has been developed. The initial separation between two contacting bodies was used as an input to solve the contact force distribution. An average cycle pre... Read More about A computationally efficient method for the prediction of fretting wear in practical engineering applications.

Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters (2021)
Journal Article
Kazakeviciute, J., Rouse, J. P., Focatiis, D., & Hyde, C. (2022). Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters. Journal of Strain Analysis for Engineering Design, 57(4), 227-254. https://doi.org/10.1177/03093247211025208

Small specimen mechanical testing is an exciting and rapidly developing field in which fundamental deformation behaviours can be observed from experiments performed on comparatively small amounts of material. These methods are particularly useful whe... Read More about Small specimen techniques for estimation of tensile, fatigue, fracture and crack propagation material model parameters.

Powder Bed Fusion of nickel-based superalloys: A review (2021)
Journal Article
Sanchez, S., Xu, Z., Smith, P., Gaspard, G., Hyde, C. J., Ashcroft, I. A., …Clare, A. T. (2021). Powder Bed Fusion of nickel-based superalloys: A review. International Journal of Machine Tools and Manufacture, 165, Article 103729. https://doi.org/10.1016/j.ijmachtools.2021.103729

Powder Bed Fusion (PBF) techniques constitute a family of Additive Manufacturing (AM) processes, which are characterised by high design flexibility and no tooling requirement. This makes PBF techniques attractive to many modern manufacturing sectors... Read More about Powder Bed Fusion of nickel-based superalloys: A review.

Multi-laser scan strategies for enhancing creep performance in LPBF (2021)
Journal Article
Sanchez, S., Hyde, C. J., Clare, A. T., & Ashcroft, I. A. (2021). Multi-laser scan strategies for enhancing creep performance in LPBF. Additive Manufacturing, 41, Article 101948. https://doi.org/10.1016/j.addma.2021.101948

Laser Powder Bed Fusion (LPBF) enables complex structures to be manufactured, which is attractive to industries where augmented service performance can be achieved. However, the build time of LPBF can be slower than traditional manufacturing processe... Read More about Multi-laser scan strategies for enhancing creep performance in LPBF.

The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion (2021)
Journal Article
Sanchez, S., Gaspard, G., Hyde, C., Ashcroft, I., Ravi, G., & Clare, A. (2021). The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion. Materials and Design, 204, Article 109647. https://doi.org/10.1016/j.matdes.2021.109647

Components manufactured by laser powder bed fusion (LPBF) are limited by their performance for use in critical applications. LPBF materials have microstructural defects, such as suboptimal grain size and morphology, and macroscale anomalies, such as... Read More about The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion.