Skip to main content

Research Repository

Advanced Search

All Outputs (101)

Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System (2019)
Journal Article
Liu, H., Bu, F., Huang, W., Liu, L., Hu, Y., Degano, M., & Gerada, C. (2020). Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System. IEEE Transactions on Industrial Electronics, 67(4), 2607-2617. https://doi.org/10.1109/TIE.2019.2912767

This paper presents an integrated control strategy for a starter/generator (S/G) system based on five-phase dual-stator winding induction machine (FPDWIM). The FPDWIM has a cage-type rotor and two sets of stator windings. One is a five-phase control... Read More about Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System.

Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine (2019)
Journal Article
Wang, T., Zhang, Y., Wen, F., Gerada, C., Liu, G., Rui, D., & Zerun, W. (2019). Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine. IET Electric Power Applications, 13(6), 812-818. https://doi.org/10.1049/iet-epa.2018.5725

© The Institution of Engineering and Technology 2019. In order to accurately estimate the temperature rise for high-power high-speed permanent magnet machines (HSPMMs), a novel temperature calculation method considering the non-linear variation of ma... Read More about Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine.

A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives (2019)
Journal Article
Xu, Z. J., Zhang, T., Bao, Y., Zhang, H., & Gerada, C. (2020). A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives. IEEE Transactions on Power Electronics, 35(1), 733-743. https://doi.org/10.1109/tpel.2019.2914119

© 1986-2012 IEEE. Sensorless machine drives in vehicle traction frequently experience rapidly-changing load disturbance and demand fast speed dynamics. Without gain-scheduling or compensation, conventional quadrature phase-locked-loop (Q-PLL) is unab... Read More about A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives.

Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines (2019)
Journal Article
Zeng, Z., Shen, Y., Lu, Q., Gerada, D., Wu, B., Huang, X., & Gerada, C. (2019). Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. IEEE Transactions on Magnetics, 55(6), 1-7. https://doi.org/10.1109/tmag.2019.2908250

By developing a simple permeance-magnetomotive force (MMF) model of switched-flux permanent magnet (SFPM) machines, the air-gap flux density produced by both PMs and armature current can be derived, in which harmonics with the same order and rotation... Read More about Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines.

Novel Motor-Shaped Rotational Inductor for Motor Drive Applications (2019)
Journal Article
Odhano, S., Khowja, M. R., Gerada, C., Vakil, G., Abebe, R., Odhano, S. A., Patel, C., & Wheeler, P. (2020). Novel Motor-Shaped Rotational Inductor for Motor Drive Applications. IEEE Transactions on Industrial Electronics, 67(3), 1844-1854. https://doi.org/10.1109/tie.2019.2907512

This paper presents a validation of the novel motor-shaped rotational inductor. To validate the concept, 12 slots 2 poles rotational inductor is tested at different supply frequencies and rotor speeds. Experimental results have shown that the iron lo... Read More about Novel Motor-Shaped Rotational Inductor for Motor Drive Applications.

Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation (2019)
Journal Article
Chowdhury, S., Wheeler, P., Huang, Z., Rivera, M., & Gerada, C. (2019). Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation. IET Power Electronics, 12(3), 450-457. https://doi.org/10.1049/iet-pel.2018.5395

This study proposes a modified modulated model predictive control (MMPC) scheme to control an open-end winding induction motor drive using an asymmetric source dual inverter with one floating bridge. The control algorithm uses a modulation algorithm... Read More about Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation.

High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve (2019)
Journal Article
Zhang, Q., Yan, L., Duan, Z., Jiao, Z., Gerada, C., & Chen, I.-M. (2020). High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve. IEEE Transactions on Industrial Electronics, 67(3), 2133-2142. https://doi.org/10.1109/tie.2019.2903761

Torque motor is one key component that directly influences the dynamic performance of jet pipe servo valve in aircraft. In this paper, a novel torque motor with hybrid-magnetization pole arrays is proposed. By changing the magnetization patterns of p... Read More about High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve.

Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry (2019)
Journal Article
La Rocca, S., Pickering, S. J., Eastwick, C. N., Gerada, C., & Rönnberg, K. (2019). Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry. Journal of Engineering, 2019(17), 3831-3835. https://doi.org/10.1049/joe.2018.8026

Here, a typical small low-voltage totally enclosed fan-cooled (TEFC) motor (output power ∼10 kW) has been studied using computational fluid dynamics. The complexity of the end-winding geometries, often consisting of several insulated copper strands b... Read More about Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry.

The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines (2019)
Journal Article
Zhang, H., Hua, W., Hu, M., Gerada, D., & Gerada, C. (2019). The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. IEEE Transactions on Magnetics, 55(7), Article 8104205. https://doi.org/10.1109/tmag.2018.2886686

The main purpose of this paper is to investigate the influence of winding location on back electromotive force (EMF) and armature inductance in flux-switching permanent-magnet (FSPM) machines. To obtain an analytical solution, a double-stator-pitch m... Read More about The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines.

A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure (2018)
Journal Article
Jiang, X., Zhang, Y., Jin, S., Zhang, F., & Gerada, C. (2019). A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure. IEEE Transactions on Industry Applications, 55(2), 1473-1483. https://doi.org/10.1109/tia.2018.2883542

© 1972-2012 IEEE. In recent years, magnetic-barrier rotor has been put forward for brushless doubly-fed generator (BDFG) application owing to its desirable performance, such as high power density and strong magnetic coupling ability. However, it also... Read More about A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure.

An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator (2018)
Journal Article
Wei, J., Xu, H., Zhou, B., Zhang, Z., & Gerada, C. (2019). An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator. IEEE Transactions on Industrial Electronics, 66(7), 5611-5622. https://doi.org/10.1109/tie.2018.2871795

© 1982-2012 IEEE. This paper proposes an integrated method of three-phase ac excitation and high-frequency voltage signal injection (HFVSI) for sensorless controlled starting of brushless synchronous machines (BSM) used as starter/generator in variab... Read More about An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator.

Eccentric reluctance and permanent magnets synchronous machines comparison (2018)
Journal Article
Mahmoud, H., Bianchi, N., Degano, M., Al-Ani, M., & Gerada, C. (2018). Eccentric reluctance and permanent magnets synchronous machines comparison. IEEE Transactions on Industry Applications, 54(6), 5760-5771. https://doi.org/10.1109/TIA.2018.2848278

This paper deals with a comparative study between reluctance (REL), permanent magnet assisted reluctance (PMAREL), and surface mounted permanent magnet synchronous machines with rotor eccentricity. Static, dynamic, and combined eccentricity cases are... Read More about Eccentric reluctance and permanent magnets synchronous machines comparison.

Multi-Physics and Multi-Objective Optimization of a High Speed PMSM for High Performance Applications (2018)
Journal Article
Zhao, W., Wang, X., Gerada, C., Zhang, H., Liu, C., & Wang, Y. (2018). Multi-Physics and Multi-Objective Optimization of a High Speed PMSM for High Performance Applications. IEEE Transactions on Magnetics, 54(11), Article 8106405. https://doi.org/10.1109/TMAG.2018.2835504

© 1965-2012 IEEE. High-speed permanent magnet synchronous machine (PMSM) can provide high power density and high efficiency, which is often highly desirable in high performance applications. A multi-physics optimization program based on the multi-obj... Read More about Multi-Physics and Multi-Objective Optimization of a High Speed PMSM for High Performance Applications.

Power quality improvement of synchronous generators using an active power filter (2018)
Journal Article
Abu-Jalala, A., Cox, T., Gerada, C., Rashed, M., Hamiti, T., & Brown, N. (2018). Power quality improvement of synchronous generators using an active power filter. IEEE Transactions on Industry Applications, 54(5), 4080-4090. https://doi.org/10.1109/TIA.2018.2828789

Active power filters (APF) are used to improve power quality and are commonly connected in parallel with the load at the point of common coupling (PCC). They are used to compensate for harmonics from nonlinear loads, for reactive power compensation a... Read More about Power quality improvement of synchronous generators using an active power filter.

Design and losses analysis of a high power density machine for flooded pump applications (2018)
Journal Article
Al-Timimy, A., Giangrande, P., Degano, M., Zeyuan, X., Galea, M., Gerada, C., Lo Calzo, G., Zhang, H., & Xia, L. (2019). Design and losses analysis of a high power density machine for flooded pump applications. IEEE Transactions on Industry Applications, 54(4), 3260-3270. https://doi.org/10.1109/TIA.2018.2821623

This paper describes the design process of a 10 kW 19000 rpm high power density surface mounted permanent magnet synchronous machine for a directly coupled pump application. In order to meet the required specifications, a compact machine, with coolin... Read More about Design and losses analysis of a high power density machine for flooded pump applications.

Synchronous reluctance motor iron losses: considering machine non-linearity at MTPA, FW, and MTPV operating conditions (2018)
Journal Article
Mahmoud, H., Bacco, G., Degano, M., Bianchi, N., & Gerada, C. (2018). Synchronous reluctance motor iron losses: considering machine non-linearity at MTPA, FW, and MTPV operating conditions. IEEE Transactions on Energy Conversion, 33(3), 1402-1410. https://doi.org/10.1109/TEC.2018.2811543

Synchronous reluctance machine has high flux density fluctuations in the iron due to the high harmonics results from the rotor anisotropy. Thus, an accurate computation of the iron losses is of paramount importance, especially during the design stage... Read More about Synchronous reluctance motor iron losses: considering machine non-linearity at MTPA, FW, and MTPV operating conditions.

Considerations on the effects that core material machining has on an electrical machine's performance (2018)
Journal Article
Al-Timimy, A., Vakil, G., Degano, M., Giangrande, P., Gerada, C., & Galea, M. (2018). Considerations on the effects that core material machining has on an electrical machine's performance. IEEE Transactions on Energy Conversion, 33(3), 1154-1163. https://doi.org/10.1109/TEC.2018.2808041

An often-overlooked aspect during the development process of electrical machines, is the validity and accuracy of the machine material properties being used at the design stage. Designers usually consider the data provided by the materials supplier,... Read More about Considerations on the effects that core material machining has on an electrical machine's performance.

Design of a stator for a high-speed turbo-generator with fixed permanent magnet rotor radius and volt-ampere constraints (2018)
Journal Article
Fernando, N., Arumugam, P., & Gerada, C. (2018). Design of a stator for a high-speed turbo-generator with fixed permanent magnet rotor radius and volt-ampere constraints. IEEE Transactions on Energy Conversion, 33(3), 1311-1320. https://doi.org/10.1109/TEC.2018.2804955

This paper investigates high-speed surface PM machine design for portable turbo-generator applications. The rotor radius is fixed to achieve certain optimal characteristics of the magnet retention mechanism. The basis of this paper is to design and s... Read More about Design of a stator for a high-speed turbo-generator with fixed permanent magnet rotor radius and volt-ampere constraints.

Magnetic field and torque output of packaged hydraulic torque motor (2018)
Journal Article
Yan, L., Duan, Z., Zhang, Q., Niu, S., Dong, Y., & Gerada, C. (2018). Magnetic field and torque output of packaged hydraulic torque motor. Energies, 11(1), https://doi.org/10.3390/en11010134

Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous resea... Read More about Magnetic field and torque output of packaged hydraulic torque motor.

A two degrees of freedom system for wheel traction applications (2017)
Journal Article
Roggia, S., Cupertino, F., Gerada, C., & Galea, M. (2018). A two degrees of freedom system for wheel traction applications. IEEE Transactions on Industrial Electronics, 65(6), 4483-4491. https://doi.org/10.1109/TIE.2017.2767554

In this paper, the use of conical induction machines is proposed for an in-wheel traction application. Such machines offer a rotational movement combined with a translational motion of the rotor. The horizontal movement is essential when active engag... Read More about A two degrees of freedom system for wheel traction applications.