Skip to main content

Research Repository

Advanced Search

All Outputs (3)

MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo (2017)
Journal Article
Sala, L., van Meer, B., Tertoolen, L., Bakkers, J., Bellin, M., Davis, R., …Burton, F. (2018). MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circulation Research, 122(3), e5. https://doi.org/10.1161/CIRCRESAHA.117.312067

Rationale: There are several methods to measure cardiomyocyte (CM) and muscle contraction but these require customized hardware, expensive apparatus and advanced informatics or can only be used in single experimental models. Consequently, data and te... Read More about MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo.

Drug-mediated shortening of action potentials in LQTS2 hiPSC-cardiomyocytes (2017)
Journal Article
Duncan, G., Firth, K. S., George, V., Hoang, M. D., Staniforth, A., Smith, G., & Denning, C. (2017). Drug-mediated shortening of action potentials in LQTS2 hiPSC-cardiomyocytes. Stem Cells and Development, 26(23), https://doi.org/10.1089/scd.2017.0172

Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) are now a well-established modality for modeling genetic disorders of the heart. This is especially so for long QT syndrome (LQTS), which is caused by perturbation of ion... Read More about Drug-mediated shortening of action potentials in LQTS2 hiPSC-cardiomyocytes.

Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification (2017)
Journal Article
Lewis, L. C., Lo, P. C. K., Foster, J. M., Dai, N., Correa, I. R., Durczak, P. M., …Ruzov, A. (in press). Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification. Epigenetics, 12(4), https://doi.org/10.1080/15592294.2017.1292189

Patterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-c... Read More about Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification.