Skip to main content

Research Repository

Advanced Search

All Outputs (2)

High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing (2018)
Journal Article
Styliari, I. D., Conte, C., Pearce, A. K., Hüsler, A., Cavanagh, R. J., Limo, M. J., Gordhan, D., Nieto-Orellana, A., Suksiriworapong, J., Couturaud, B., Williams, P., Hook, A. L., Alexander, M. R., Garnett, M. C., Alexander, C., Burley, J. C., & Taresco, V. (2018). High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromolecular Materials and Engineering, 303(8), 1-9. https://doi.org/10.1002/mame.201800146

The self‐assembly of specific polymers into well‐defined nanoparticles (NPs) is of great interest to the pharmaceutical industry as the resultant materials can act as drug delivery vehicles. In this work, a high‐throughput method to screen the abilit... Read More about High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing.

Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices (2018)
Journal Article
Dundas, A. A., Mikulskis, P., Hook, A., Dundas, A., Irvine, D., Sanni, O., Anderson, D., Langer, R., Alexander, M. R., Williams, P., & Winkler, D. A. (2018). Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. ACS Applied Materials and Interfaces, 10(1), 139-149. https://doi.org/10.1021/acsami.7b14197

© 2017 American Chemical Society. Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of... Read More about Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices.