ENDER OZCAN ender.ozcan@nottingham.ac.uk
Professor of Computer Science and Operational Research
Choice function based hyper-heuristics for multi-objective optimization
�zcan, Ender
Authors
Abstract
A selection hyper-heuristic is a high level search methodology which operates over a fixed set of low level heuristics. During the iterative search process, a heuristic is selected and applied to a candidate solution in hand, producing a new solution which is then accepted or rejected at each step. Selection hyper-heuristics have been increasingly, and successfully, applied to single-objective optimization problems, while work on multi-objective selection hyper-heuristics is limited. This work presents one of the initial studies on selection hyper-heuristics combining a choice function heuristic selection methodology with great deluge and late acceptance as non-deterministic move acceptance methods for multi-objective optimization. A well-known hypervolume metric is integrated into the move acceptance methods to enable the approaches to deal with multi-objective problems. The performance of the proposed hyper-heuristics is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, they are applied to the vehicle crashworthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the non-deterministic move acceptance, particularly great deluge when used as a component of a choice function based selection hyper-heuristic.
Citation
Özcan, E. (2015). Choice function based hyper-heuristics for multi-objective optimization. Applied Soft Computing, 28, https://doi.org/10.1016/j.asoc.2014.12.012
Journal Article Type | Article |
---|---|
Publication Date | Mar 1, 2015 |
Deposit Date | Jan 5, 2016 |
Publicly Available Date | Jan 5, 2016 |
Journal | Applied Soft Computing |
Print ISSN | 1568-4946 |
Electronic ISSN | 1872-9681 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 28 |
DOI | https://doi.org/10.1016/j.asoc.2014.12.012 |
Keywords | Hyper-heuristic; Metaheuristic; Great deluge; Late acceptance; Multi-objective optimization |
Public URL | https://nottingham-repository.worktribe.com/output/984950 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S1568494614006449 |
Files
CF_GD_LA.pdf
(1.2 Mb)
PDF
You might also like
CUDA-based parallel local search for the set-union knapsack problem
(2024)
Journal Article
A benchmark dataset for multi-objective flexible job shop cell scheduling
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search