Sheng Chen
Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media
Chen, Sheng; Gong, Wei; Yan, Yuying
Abstract
Conjugate natural convection heat transfer in an open-ended square cavity, which is partially filled with porous media, is a useful research prototype to deepen our insight into many important practical applications, such as solar energy collectors. But surprising, until now there is no open literature on it. In addition, for traditional numerical approaches, it is a great challenge to model conjugate problems on fluid-porous interfaces. In the present work, firstly we develop a new lattice Boltzmann (LB) approach to overcome such difficulty. The present LB model is validated by three benchmark tests. With the aid of this LB approach, we investigate the effects of thickness of porous layer, fluid-to-porous thermal conductivity ratio and permeability of porous layer on conjugate natural convection heat transfer in an open-ended porous-partially-filled square cavity, for the first time. It is found that these factors all influence the patterns of flow field and temperature field significantly. Especially, there exist some critical values. A small offset from them will cause a substantial change of heat and mass transfer. Sometimes the change trends are completely reversed. The present results may provide useful theoretical guides for the relevant practical applications.
Citation
Chen, S., Gong, W., & Yan, Y. (2018). Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. International Journal of Heat and Mass Transfer, 124, https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.084
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 24, 2018 |
Online Publication Date | Apr 5, 2018 |
Publication Date | Sep 1, 2018 |
Deposit Date | Apr 9, 2018 |
Publicly Available Date | Apr 6, 2019 |
Journal | International Journal of Heat and Mass Transfer |
Print ISSN | 0017-9310 |
Electronic ISSN | 0017-9310 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 124 |
DOI | https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.084 |
Keywords | Conjugate heat transfer; Porous media; Natural convection; Open-ended cavity; Lattice Boltzmann method |
Public URL | https://nottingham-repository.worktribe.com/output/960727 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0017931018301546 |
Contract Date | Apr 9, 2018 |
Files
openedned_fordeposit.pdf
(433 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
A Modified Ant Colony Optimization Algorithm for Network Coding Resource Minimization
(2015)
Journal Article
Power conditioning of thermoelectric generated power using dc-dc converters: a case study of a boost converter
(-0001)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search