Sheng Chen
Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media
Chen, Sheng; Gong, Wei; Yan, Yuying
Authors
Abstract
Conjugate natural convection heat transfer in an open-ended square cavity, which is partially filled with porous media, is a useful research prototype to deepen our insight into many important practical applications, such as solar energy collectors. But surprising, until now there is no open literature on it. In addition, for traditional numerical approaches, it is a great challenge to model conjugate problems on fluid-porous interfaces. In the present work, firstly we develop a new lattice Boltzmann (LB) approach to overcome such difficulty. The present LB model is validated by three benchmark tests. With the aid of this LB approach, we investigate the effects of thickness of porous layer, fluid-to-porous thermal conductivity ratio and permeability of porous layer on conjugate natural convection heat transfer in an open-ended porous-partially-filled square cavity, for the first time. It is found that these factors all influence the patterns of flow field and temperature field significantly. Especially, there exist some critical values. A small offset from them will cause a substantial change of heat and mass transfer. Sometimes the change trends are completely reversed. The present results may provide useful theoretical guides for the relevant practical applications.
Citation
Chen, S., Gong, W., & Yan, Y. (2018). Conjugate natural convection heat transfer in an open-ended square cavity partially filled with porous media. International Journal of Heat and Mass Transfer, 124, https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.084
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 24, 2018 |
Online Publication Date | Apr 5, 2018 |
Publication Date | Sep 1, 2018 |
Deposit Date | Apr 9, 2018 |
Publicly Available Date | Apr 6, 2019 |
Journal | International Journal of Heat and Mass Transfer |
Print ISSN | 0017-9310 |
Electronic ISSN | 0017-9310 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 124 |
DOI | https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.084 |
Keywords | Conjugate heat transfer; Porous media; Natural convection; Open-ended cavity; Lattice Boltzmann method |
Public URL | https://nottingham-repository.worktribe.com/output/960727 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0017931018301546 |
Contract Date | Apr 9, 2018 |
Files
openedned_fordeposit.pdf
(433 Kb)
PDF
You might also like
Effect of loaded carbon-based nanoparticles on the evaporation dynamics of sessile droplets
(2024)
Journal Article
Performance investigation and optimization of an L-type thermoelectric generator
(2024)
Journal Article
Numerical Study on Thermal Storage-Discharge Process of Envelopes in Building Heating Systems With Different Terminals
(2024)
Presentation / Conference Contribution
Emissions of volatile organic compounds from reed diffusers in indoor environments
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search