Dino Oglic
Learning in reproducing kernel Kreın spaces
Oglic, Dino; Gärtner, Thomas
Authors
Thomas Gärtner
Abstract
We formulate a novel regularized risk minimization problem for learning in reproducing kernel Kreın spaces and show that the strong representer theorem applies to it. As a result of the latter, the learning problem can be expressed as the minimization of a quadratic form over a hypersphere of constant radius. We present an algorithm that can find a globally optimal solution to this nonconvex optimization problem in time cubic in the number of instances. Moreover, we derive the gradient of the solution with respect to its hyperparameters and, in this way, provide means for efficient hyperparameter tuning. The approach comes with a generalization bound expressed in terms of the Rademacher complexity of the corresponding hypothesis space. The major advantage over standard kernel methods is the ability to learn with various domain specific similarity measures for which positive definiteness does not hold or is difficult to establish. The approach is evaluated empirically using indefinite kernels defined on structured as well as vectorial data. The empirical results demonstrate a superior performance of our approach over the state-of-the-art baselines.
Citation
Oglic, D., & Gärtner, T. Learning in reproducing kernel Kreın spaces. Presented at 35th International Conference on Machine Learning
Conference Name | 35th International Conference on Machine Learning |
---|---|
End Date | Jul 15, 2018 |
Acceptance Date | Jun 1, 2018 |
Publication Date | Jul 10, 2018 |
Deposit Date | Jun 14, 2018 |
Publicly Available Date | Jul 10, 2018 |
Peer Reviewed | Peer Reviewed |
Public URL | https://nottingham-repository.worktribe.com/output/946102 |
Contract Date | Jun 14, 2018 |
Files
krein.pdf
(377 Kb)
PDF
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search