Skip to main content

Research Repository

Advanced Search

Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows

Zee, Kristoffer G.van der; Zee, Kristoffer G. van der; Miles, Christopher; van der Zee, Kristoffer George; Hubbard, Matthew E.; MacKenzie, Roderick

Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows Thumbnail


Authors

Kristoffer G.van der Zee

Kristoffer G. van der Zee

Christopher Miles

KRISTOFFER VAN DER ZEE KG.VANDERZEE@NOTTINGHAM.AC.UK
Professor of Numerical Analysis &computational Applied Mathematics

MATTHEW HUBBARD MATTHEW.HUBBARD@NOTTINGHAM.AC.UK
Professor of Computational and Applied Mathematics

Roderick MacKenzie



Contributors

Harald van Brummelen
Editor

Alessandro Corsini
Editor

Simona Perotto
Editor

Gianluigi Rozza
Editor

Abstract

© Springer Nature Switzerland AG 2020. We use phase-field techniques coupled with a Coleman–Noll type procedure to derive a family of thermomechanically consistent models for predicting the evolution of a non-volatile thin liquid film on a flat substrate starting from mass conservation laws and the second law of thermodynamics, and provide constraints which must be met when modeling the dependent variables within a constitutive class to ensure dissipation of the free energy. We show that existing models derived using different techniques and starting points fit within this family. We regularise a classical model derived using asymptotic techniques to obtain a model which better handles film rupture, and perform numerical simulations in 2 and 3 dimensions using linear finite elements in space and a convex splitting method in time to investigate the evolution of a flat thin film undergoing rupture and dewetting on a flat solid substrate.

Citation

Zee, K. G. D., Zee, K. G. V. D., Miles, C., van der Zee, K. G., Hubbard, M. E., & MacKenzie, R. (2020). Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows. In H. van Brummelen, A. Corsini, S. Perotto, & G. Rozza (Eds.), Numerical methods for flows: FEF 2017 selected contributions (121-129). Springer Verlag. https://doi.org/10.1007/978-3-030-30705-9_11

Online Publication Date Feb 23, 2020
Publication Date Jan 1, 2020
Deposit Date Jul 24, 2018
Publicly Available Date Jan 2, 2021
Publisher Springer Verlag
Pages 121-129
Series Title Lecture Notes in Computational Science and Engineering
Series Number 132
Series ISSN 1439-7358
Book Title Numerical methods for flows: FEF 2017 selected contributions
ISBN 9783030307042
DOI https://doi.org/10.1007/978-3-030-30705-9_11
Public URL https://nottingham-repository.worktribe.com/output/941690
Publisher URL https://link.springer.com/chapter/10.1007%2F978-3-030-30705-9_11
Additional Information First Online: 23 February 2020
Contract Date Jun 25, 2018

Files





You might also like



Downloadable Citations