Kristoffer G.van der Zee
Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows
Zee, Kristoffer G.van der; Zee, Kristoffer G. van der; Miles, Christopher; van der Zee, Kristoffer George; Hubbard, Matthew E.; MacKenzie, Roderick
Authors
Kristoffer G. van der Zee
Christopher Miles
KRISTOFFER VAN DER ZEE KG.VANDERZEE@NOTTINGHAM.AC.UK
Professor of Numerical Analysis &computational Applied Mathematics
MATTHEW HUBBARD MATTHEW.HUBBARD@NOTTINGHAM.AC.UK
Professor of Computational and Applied Mathematics
Roderick MacKenzie
Contributors
Harald van Brummelen
Editor
Alessandro Corsini
Editor
Simona Perotto
Editor
Gianluigi Rozza
Editor
Abstract
© Springer Nature Switzerland AG 2020. We use phase-field techniques coupled with a Coleman–Noll type procedure to derive a family of thermomechanically consistent models for predicting the evolution of a non-volatile thin liquid film on a flat substrate starting from mass conservation laws and the second law of thermodynamics, and provide constraints which must be met when modeling the dependent variables within a constitutive class to ensure dissipation of the free energy. We show that existing models derived using different techniques and starting points fit within this family. We regularise a classical model derived using asymptotic techniques to obtain a model which better handles film rupture, and perform numerical simulations in 2 and 3 dimensions using linear finite elements in space and a convex splitting method in time to investigate the evolution of a flat thin film undergoing rupture and dewetting on a flat solid substrate.
Citation
Zee, K. G. D., Zee, K. G. V. D., Miles, C., van der Zee, K. G., Hubbard, M. E., & MacKenzie, R. (2020). Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows. In H. van Brummelen, A. Corsini, S. Perotto, & G. Rozza (Eds.), Numerical methods for flows: FEF 2017 selected contributions (121-129). Springer Verlag. https://doi.org/10.1007/978-3-030-30705-9_11
Online Publication Date | Feb 23, 2020 |
---|---|
Publication Date | Jan 1, 2020 |
Deposit Date | Jul 24, 2018 |
Publicly Available Date | Jan 2, 2021 |
Publisher | Springer Verlag |
Pages | 121-129 |
Series Title | Lecture Notes in Computational Science and Engineering |
Series Number | 132 |
Series ISSN | 1439-7358 |
Book Title | Numerical methods for flows: FEF 2017 selected contributions |
ISBN | 9783030307042 |
DOI | https://doi.org/10.1007/978-3-030-30705-9_11 |
Public URL | https://nottingham-repository.worktribe.com/output/941690 |
Publisher URL | https://link.springer.com/chapter/10.1007%2F978-3-030-30705-9_11 |
Additional Information | First Online: 23 February 2020 |
Contract Date | Jun 25, 2018 |
Files
miles_vanderZee_hubbard_macKenzie_NottmEPrint2018.pdf
(519 Kb)
PDF
You might also like
Formal asymptotic limit of a diffuse-interface tumor-growth model
(2015)
Journal Article
An abstract analysis of optimal goal-oriented adaptivity
(2016)
Journal Article
Computational phase-field modeling
(2017)
Book Chapter
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search