Skip to main content

Research Repository

Advanced Search

An assessment of the precise products on static Precise Point Positioning using Multi-Constellation GNSS

Mohammed, Jareer; Moore, Terry; Hill, Chris; Bingley, R.M.

An assessment of the precise products on static Precise Point Positioning using Multi-Constellation GNSS Thumbnail


Authors

Jareer Mohammed

Terry Moore

Chris Hill

R.M. Bingley



Abstract

Precise point positioning (PPP) is highly dependent on the precise ephemerides and satellite clock products that are used. Different ephemeris and clock products are available from a variety of different organizations. The aim of this paper is to assess the achievable static positioning accuracy and precision when using different precise ephemerides from three analysis centres Natural Resources Canada (EMX), European Space Agency (ESA) and GeoForschungsZentrum (GFZ), using GPS alone, GLONASS alone, and GPS and GLONASS combined. It will be shown in this paper that the precise products are significantly affected by the time-base of the reference stations, and that this is propagated through to all the estimated satellite clocks. In order to overcome the combined biases in the estimated satellite clock, in the PPP processing, these clocks errors need to be handled with an appropriate variation in the estimated receiver clock. It will also be shown that the precise coordinates of the satellites differ between the analysis centres, and this affects the PPP position estimation at the millimetre level. However, all those products will be shown to result in the same level of precision for all coordinate components and are equivalent to the horizontal precision from a Global Double Difference (GDD) solution. For the horizontal coordinate component, the level of agreement between the PPP solutions, and with the GDD solution, is at the millimetre level. There is a notable, but small, bias in the north coordinate components of the PPP solutions, from the corresponding north component of the GDD solutions. It is shown that this difference is due to the different strategy adopted for the GDD and PPP solutions, with PPP being more affected by the changing satellite systems. The precision of the heights of the receiver sites will be shown to be almost the same across all the PPP scenarios, with all three products. Finally, it will be concluded that accuracy of the height component is system dependent and is related to the behaviour of antenna phase centre with the different constellation type.

Citation

Mohammed, J., Moore, T., Hill, C., & Bingley, R. (in press). An assessment of the precise products on static Precise Point Positioning using Multi-Constellation GNSS.

Conference Name IEEE/ION PLANS 2018
End Date Apr 26, 2018
Acceptance Date Nov 17, 2017
Online Publication Date Jun 7, 2018
Deposit Date May 16, 2018
Publicly Available Date Jun 7, 2018
Peer Reviewed Peer Reviewed
Keywords GNSS; GPS; GLONASS; Precise Point Positioning
Public URL https://nottingham-repository.worktribe.com/output/936674
Publisher URL https://ieeexplore.ieee.org/document/8373437/
Related Public URLs https://www.ion.org/plans/abstracts.cfm?paperID=5798
Additional Information © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

To be published in Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS)
Contract Date May 16, 2018

Files





Downloadable Citations