Carlo U. Perotto
Heterobimetallic [NiFe] complexes containing mixedCO/CN− ligands: analogs of the active site of the [NiFe]hydrogenases
Perotto, Carlo U.; Sodipo, Charlene L.; Jones, Graham J.; Tidey, Jeremiah P.; Blake, Alexander J.; Lewis, William; Davies, E. Stephen; McMaster, Jonathan; Schröder, Martin
Authors
Charlene L. Sodipo
Graham J. Jones
Jeremiah P. Tidey
Alexander J. Blake
William Lewis
Dr STEPHEN DAVIES e.s.davies@nottingham.ac.uk
RESEARCH OFFICER
Professor JONATHAN MCMASTER JONATHAN.MCMASTER@NOTTINGHAM.AC.UK
PROFESSOR OF CHEMISTRY
Martin Schröder
Abstract
The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN− ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni(N2S2)Fe(CO)2(CN)2], [Ni(S4)Fe(CO)2(CN)2] and [Ni(N2S3)Fe(CO)2(CN)2] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO)2(CN)2} unit. X-ray crystallographic studies on [Ni(N2S3)Fe(CO)2(CN)2], supported by DFT calculations, are consistent with a solid state structure containing distinct molecules in the singlet (S = 0) and triplet (S = 1) states. Each cluster exhibits irreversible reduction processes between −1.45 to −1.67 V vs Fc+/Fc and [Ni(N2S3)Fe(CO)2(CN)2] possesses a reversible oxidation process at 0.17 V vs Fc+/Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a NiIIIFeII formulation for [Ni(N2S3)Fe(CO)2(CN)2]+. The SOMO in [Ni(N2S3)Fe(CO)2(CN)2]+ is based on Ni 3dz² and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a NiIIIFeII formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni(N2S3)Fe(CO)2(CN)2] and its [Ni(N2S3)] precursor, together with calculations on the oxidized [Ni(N2S3)Fe(CO)2(CN)2]+ and [Ni(N2S3)]+ forms suggests that the binding of the {Fe(CO)(CN)2} unit to the {Ni(CysS)4} center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors. This is in addition to the role of the Fe center in modulating the redox potential and geometry, and supporting a bridging hydride species between the Ni and Fe centers in the Ni-C state..
Citation
Perotto, C. U., Sodipo, C. L., Jones, G. J., Tidey, J. P., Blake, A. J., Lewis, W., Davies, E. S., McMaster, J., & Schröder, M. (in press). Heterobimetallic [NiFe] complexes containing mixedCO/CN− ligands: analogs of the active site of the [NiFe]hydrogenases. Inorganic Chemistry, 57(5), https://doi.org/10.1021/acs.inorgchem.7b02905
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 12, 2017 |
Online Publication Date | Feb 21, 2018 |
Deposit Date | Feb 26, 2018 |
Publicly Available Date | Feb 22, 2019 |
Journal | Inorganic Chemistry |
Print ISSN | 0020-1669 |
Electronic ISSN | 1520-510X |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 57 |
Issue | 5 |
DOI | https://doi.org/10.1021/acs.inorgchem.7b02905 |
Public URL | https://nottingham-repository.worktribe.com/output/913229 |
Publisher URL | https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02905 |
Additional Information | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b02905 |
Contract Date | Feb 26, 2018 |
Files
Jon McMaster Heterobimetallic complexes.pdf
(907 Kb)
PDF
You might also like
Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines
(2024)
Journal Article
Organoruthenium Complexes Containing Phosphinodicarboxamide Ligands
(2023)
Journal Article
Slow magnetic relaxation in Fe(ii) m-terphenyl complexes
(2022)
Journal Article
Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands
(2022)
Preprint / Working Paper
Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search