Skip to main content

Research Repository

Advanced Search

High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season

Matysek, Magdalena; Evers, Stephanie; Samuel, Marshall Kana; Sjogersten, Sofie

High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season Thumbnail


Authors

Magdalena Matysek

Stephanie Evers

Marshall Kana Samuel

SOFIE SJOGERSTEN Sofie.Sjogersten@nottingham.ac.uk
Professor of Environmental Science



Abstract

Abstract

Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m−2 h−1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m−2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.

Citation

Matysek, M., Evers, S., Samuel, M. K., & Sjogersten, S. (in press). High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season. Wetlands Ecology and Management, https://doi.org/10.1007/s11273-017-9583-6

Journal Article Type Article
Acceptance Date Oct 14, 2017
Online Publication Date Dec 1, 2017
Deposit Date Feb 13, 2018
Publicly Available Date Feb 13, 2018
Journal Wetlands Ecology and Management
Print ISSN 0923-4861
Electronic ISSN 1572-9834
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1007/s11273-017-9583-6
Public URL https://nottingham-repository.worktribe.com/output/898115
Publisher URL https://link.springer.com/article/10.1007/s11273-017-9583-6
Contract Date Feb 13, 2018

Files





You might also like



Downloadable Citations