Skip to main content

Research Repository

See what's under the surface

Advanced Search

Exploring the landscape of the space of heuristics for local search in SAT

Burnett, Andrew W.; Parkes, Andrew J.


Andrew W. Burnett

Andrew J. Parkes


Local search is a powerful technique on many combinatorial optimisation problems. However, the effectiveness of local search methods will often depend strongly on the details of the heuristics used within them. There are many potential heuristics, and so finding good ones is in itself a challenging search problem. A natural method to search for effective heuristics is to represent the heuristic as a small program and then apply evolutionary methods, such as genetic programming. However, the search within the space of heuristics is not well understood, and in particular little is known of the associated search landscapes. In this paper, we consider the domain of propositional satisfiability (SAT), and a generic class of local search methods called ‘WalkSAT’. We give a language for generating the heuristics; using this we generated over three million heuristics, in a systematic manner, and evaluated their associated fitness values. We then use this data set as the basis for an initial analysis of the landscape of the space of heuristics. We give evidence that the heuristic landscape exhibits clustering. We also consider local search on the space of heuristics and show that it can perform quite well, and could complement genetic programming methods on that space.

Publication Date Jun 5, 2017
Peer Reviewed Peer Reviewed
APA6 Citation Burnett, A. W., & Parkes, A. J. (2017). Exploring the landscape of the space of heuristics for local search in SAT
Related Public URLs
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf
Additional Information 978-1-5090-4601-0 ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.