Professor PAUL HOUSTON PAUL.HOUSTON@NOTTINGHAM.AC.UK
PROFESSOR OF COMPUTATIONAL AND APPLIED MATHS
Adjoint error estimation and adaptivity for hyperbolic problems
Houston, Paul
Authors
Contributors
Remi Abgrall
Editor
Chi-Wang Shu
Editor
Abstract
In this article we present an overview of a posteriori error estimation and adaptive mesh design for hyperbolic/nearly-hyperbolic problems. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument weighted Type I and unweighted Type II bounds may be established. Here, the relative advantages of these two approaches are discussed in detail, together with the construction of appropriate dual problems that ensure optimality of the resulting bounds. The exploitation of general adaptive refinement strategies based on employing isotropic and anisotropic h- and hp-refinement will be discussed. Applications of this general theory to eigenvalue problems and bifurcation problems will also be presented.
Citation
Houston, P. (2017). Adjoint error estimation and adaptivity for hyperbolic problems. In R. Abgrall, & C.-W. Shu (Eds.), Handbook of Numerical Methods for Hyperbolic Problems. Applied and Modern Issues. Elsevier / North Holland
Publication Date | Jan 30, 2017 |
---|---|
Deposit Date | Jun 14, 2016 |
Peer Reviewed | Peer Reviewed |
Issue | 18 |
Series Title | Handbook of numerical analysis |
Book Title | Handbook of Numerical Methods for Hyperbolic Problems. Applied and Modern Issues |
ISBN | 9780444639103 |
Keywords | Hyperbolic conservation laws, adjoint methods, adaptivity |
Public URL | https://nottingham-repository.worktribe.com/output/838643 |
Related Public URLs | https://www.elsevier.com/books/handbook-on-numerical-methods-for-hyperbolic-problems/unknown/978-0-444-63910-3 |
Contract Date | Jan 20, 2017 |
You might also like
Lubrication flow in grinding
(2024)
Journal Article
Linearization of the Travel Time Functional in Porous Media Flows
(2022)
Journal Article
Gibbs phenomena for Lq-best approximation in finite element spaces
(2022)
Journal Article