Tom Coates
Quantum periods for 3-dimensional Fano manifolds
Coates, Tom; Corti, Alessio; Galkin, Sergey; Kasprzyk, Alexander M.
Authors
Alessio Corti
Sergey Galkin
Alexander M. Kasprzyk
Abstract
The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by a collection of Laurent polynomials called Minkowski polynomials. This was conjectured in joint work with Golyshev. It suggests a new approach to the classification of Fano manifolds: by proving an appropriate mirror theorem and then classifying Fano mirrors.
Our methods are likely to be of independent interest. We rework the Mori-Mukai classification of 3-dimensional Fano manifolds, showing that each of them can be expressed as the zero locus of a section of a homogeneous vector bundle over a GIT quotient V/G, where G is a product of groups of the form GL_n(C) and V is a representation of G. When G=GL_1(C)^r, this expresses the Fano 3-fold as a toric complete intersection; in the remaining cases, it expresses the Fano 3-fold as a tautological subvariety of a Grassmannian, partial flag manifold, or projective bundle thereon. We then compute the quantum periods using the Quantum Lefschetz Hyperplane Theorem of Coates-Givental and the Abelian/non-Abelian correspondence of Bertram-Ciocan-Fontanine-Kim-Sabbah.
Citation
Coates, T., Corti, A., Galkin, S., & Kasprzyk, A. M. (2016). Quantum periods for 3-dimensional Fano manifolds. Geometry and Topology, 20(1), https://doi.org/10.2140/gt.2016.20.103
Journal Article Type | Article |
---|---|
Publication Date | Feb 29, 2016 |
Deposit Date | Mar 24, 2016 |
Publicly Available Date | Mar 24, 2016 |
Journal | Geometry & Topology |
Print ISSN | 1465-3060 |
Electronic ISSN | 1364-0380 |
Publisher | Mathematical Sciences Publishers |
Peer Reviewed | Peer Reviewed |
Volume | 20 |
Issue | 1 |
DOI | https://doi.org/10.2140/gt.2016.20.103 |
Public URL | https://nottingham-repository.worktribe.com/output/774714 |
Publisher URL | http://msp.org/gt/2016/20-1/p03.xhtml |
Files
1303.3288v3.pdf
(1.5 Mb)
PDF
You might also like
Polytopes and machine learning
(2023)
Journal Article
Machine learning detects terminal singularities
(2023)
Presentation / Conference Contribution
Machine learning the dimension of a Fano variety
(2023)
Journal Article
Machine Learning: The Dimension of a Polytope
(2023)
Book Chapter
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search