Skip to main content

Research Repository

Advanced Search

Key traits of living fossil Ginkgo biloba are highly variable but not influenced by climate – Implications for palaeo-pCO2 reconstructions and climate sensitivity

Steinthorsdottir, M.; Jardine, P. E.; Lomax, B. H.; Sallstedt, T.

Key traits of living fossil Ginkgo biloba are highly variable but not influenced by climate – Implications for palaeo-pCO2 reconstructions and climate sensitivity Thumbnail


Authors

M. Steinthorsdottir

P. E. Jardine

B. H. Lomax

T. Sallstedt



Abstract

The Ginkgoales, including the ‘living fossil’ Ginkgo biloba, are an important group for stomata-based palaeo-pCO2 reconstructions, with long evolutionary lineages and an extensive, abundant fossil record. The stomatal proxy for palaeo-pCO2 can improve our understanding of the exact relationship between pCO2 and temperatures – Earth's climate sensitivity: a key measure of global warming by pCO2. However, pCO2 records from future climate analogues in the past, such as the mid-Miocene Climatic Optimum, seemingly underestimate pCO2 – climate models cannot simulate the past temperatures with the only moderately elevated pCO2 reconstructed by proxies. Either climate sensitivity must have been elevated, which has implications for future climate forecasts, or proxies underestimate pCO2 due to additional environmental factors. Here we tested whether climate conditions impact stomatal parameters and thus pCO2 reconstruction on a large global database of G. biloba leaves from all continents except Antarctica, spanning 12 climate zones. We reconstructed ambient pCO2 using three stomatal proxy methods (stomatal ratio, transfer functions, Franks gas exchange model) and one stomata-independent isotope-based proxy for comparison (C3 proxy). We found that the stomatal proxy methods reconstructed ambient pCO2 reasonably well and uniformly, but that the C3 proxy underestimated pCO2. All the investigated stomatal parameters displayed an unexpectedly large variability, but no significant relationship with temperature, precipitation, or seasonality. Based on these results, the stomatal proxy is not influenced by climate and specifically does not systematically underestimate pCO2 under high temperatures. Climate sensitivity was likely instead elevated during past global warming episodes, an urgent consideration in climate forecasts for our rapidly warming Earth.

Citation

Steinthorsdottir, M., Jardine, P. E., Lomax, B. H., & Sallstedt, T. (2022). Key traits of living fossil Ginkgo biloba are highly variable but not influenced by climate – Implications for palaeo-pCO2 reconstructions and climate sensitivity. Global and Planetary Change, 211, Article 103786. https://doi.org/10.1016/j.gloplacha.2022.103786

Journal Article Type Article
Acceptance Date Mar 11, 2022
Online Publication Date Mar 24, 2022
Publication Date Apr 1, 2022
Deposit Date Mar 25, 2022
Publicly Available Date Mar 25, 2022
Journal Global and Planetary Change
Print ISSN 0921-8181
Publisher Elsevier BV
Peer Reviewed Peer Reviewed
Volume 211
Article Number 103786
DOI https://doi.org/10.1016/j.gloplacha.2022.103786
Keywords Oceanography; Global and Planetary Change
Public URL https://nottingham-repository.worktribe.com/output/7650182
Publisher URL https://www.sciencedirect.com/science/article/pii/S0921818122000534?via%3Dihub

Files




You might also like



Downloadable Citations