ALEXANDER KASPRZYK A.M.KASPRZYK@NOTTINGHAM.AC.UK
Associate Professor
Laurent polynomials in Mirror Symmetry: why and how?
Kasprzyk, Alexander; Przyjalkowski, Victor
Authors
Victor Przyjalkowski
Abstract
We survey the approach to mirror symmetry via Laurent polynomials, outlining some of the main conjectures, problems, and questions related to the subject. We discuss: how to construct Landau-Ginzburg models for Fano varieties; how to apply them to classification problems; and how to compute invariants of Fano varieties via Landau-Ginzburg models.
Citation
Kasprzyk, A., & Przyjalkowski, V. (2022). Laurent polynomials in Mirror Symmetry: why and how?. Proyecciones Journal of Mathematics, 41(2), 481-515. https://doi.org/10.22199/issn.0717-6279-5279
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 30, 2021 |
Online Publication Date | Apr 1, 2022 |
Publication Date | Apr 1, 2022 |
Deposit Date | Feb 15, 2022 |
Publicly Available Date | Apr 2, 2022 |
Journal | Proyecciones (Antofagasta) |
Electronic ISSN | 0717-6279 |
Publisher | Universidad Catolica del Norte - Chile |
Peer Reviewed | Peer Reviewed |
Volume | 41 |
Issue | 2 |
Pages | 481-515 |
DOI | https://doi.org/10.22199/issn.0717-6279-5279 |
Keywords | General Mathematics |
Public URL | https://nottingham-repository.worktribe.com/output/7468389 |
Files
Questions
(426 Kb)
PDF
You might also like
On the maximum dual volume of a canonical Fano polytope
(2022)
Journal Article
On the Fine Interior of Three-Dimensional Canonical Fano Polytopes
(2022)
Conference Proceeding
Interactions with Lattice Polytopes
(2022)
Conference Proceeding
Databases of quantum periods for Fano manifolds
(2022)
Journal Article