
LAURENT POLYNOMIALS IN MIRROR SYMMETRY: WHY AND HOW?

ALEXANDER KASPRZYK AND VICTOR PRZYJALKOWSKI

Abstract. We survey the approach to mirror symmetry via Laurent polynomials, outlining

some of the main conjectures, problems, and questions related to the subject. We discuss: how

to construct Landau–Ginzburg models for Fano varieties; how to apply them to classification

problems; and how to compute invariants of Fano varieties via Landau–Ginzburg models.

1. Introduction

Mirror symmetry suggests a conjectural relationship between Fano varieties and their Lan-

dau–Ginzburg (LG) models — one dimensional families of Calabi–Yau varieties dual to anti-

canonical sections of the Fano varieties. The duality relates symplectic properties of the Fano

variety X (equipped with a complexification of a symplectic form on it) with algebraic proper-

ties of the dual LG model (Y,w). The most general mirror symmetry conjectures (for example,

those arising from Homological Mirror Symmetry) are hard to analyse. In this paper we dis-

cuss an effective approach to constructing LG models of Fano varieties, and to computing their

numerical properties, which confirms the general mirror symmetry expectation.

We are mostly interested in one of the two “arrows” of mirror symmetry that relate symplectic

properties of a Fano variety X and algebraic properties of the dual LG model w : Y → C. To

consider X as a symplectic variety we first fix a symplectic form; in this paper we chose the

anticanonical form (however many of the invariants we study do not depend on the choice of the

form). We discuss two main problems: how to construct LG models, and how to apply this to

the problem of classifying Fano varieties; and how to compute invariants for an LG model, and

how to relate these invariants to the invariants of Fano varieties. For the first problem we use

an open chart (the algebraic torus) of the LG model; this enables us to apply the machinery of

toric geometry and combinatorics. The second problem mostly deals with compactifications of

these open charts and their cohomological invariants.

The exposition in this paper closely follows [12] (for the material in §3), [53] (for the material

in § 4 and § 5), [3] (for the material in §6), [15] (for the material in §7), [38,45] (for the material

in §8), and [10] (for the material in §9).

2. Two key examples

Many of the phenomena we wish to study already appear in the following two examples.

Example 1. Let X be the projective plane P2. To X we associate the formal power series

ĜX(t) =
∑
k≥0

(3k)!

(k!)3
t3k.

Let us call the Laurent polynomial

f = x+ y +
1

xy
∈ C[x±1, y±1]
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a mirror partner for X. Denote the constant coefficient of fk by coeff1(f
k) and set

πf (t) =
∑
k≥0

coeff1(f
k)tk.

It is easy to see that ĜX(t) = πf (t).

Now consider the family F = {ft = 1}, t ∈ P1 \ {0}, of fibres of the map (C×)2 → C given

by f . This is a family of non-compact curves. Let us compactify it. For this consider the

embeddings

(C×)2 = SpecC[x±1, y±1] ↪→ P = P(x : y : z)

and (C×)2×(P \ {0}) ↪→ P×P1, where the coordinates on A1 and P1 are t and t0, t, respectively.

Let Z̃ be the closure of the graph of f . The projection Z̃ → P1 gives a structure of a rational

elliptic surface. The variety Z̃ is singular; however it has du Val singularities and admits

a crepant resolution Z → Z̃. The obtained elliptic surface has the fibre over ∞ = (1 : 0)

which is a wheel of nine smooth rational curves, and three other singular fibres having ordinary

double points. Homological Mirror Symmetry conjecture for this family is studied in [8]. Notice

that dim |−KX | = 9.

Finally consider the Laurent polynomial

f ′ = b+
(a+ 1)2

ab2
∈ C[a±1, b±1].

One can see that

πf ′(t) =
∑
k≥0

(3k)!

(k!)3
t3k.

This family of open curves which are fibres of f ′ can be compactified to the family of elliptic

curves Z ′ → P1. In fact one has Z ′ ∼= Z. The reason is that the families of fibres for f and f ′

are birational over the base; this can be seen using the birational transformation

x =
ab

a+ 1
, y =

b

a+ 1
.

Note also that the Newton polytopes of f and f ′ — that is, the convex hulls of exponents of

monomials of f and f ′ — are, respectively,

conv{(1, 0), (0, 1), (−1,−1)} and conv{(0, 1), (1,−2), (−1,−2)}.

If we consider toric surfaces whose fans are generated by the cones over the faces of the Newton

polytopes, we get, respectively, X = P2 and X ′ = P(1, 1, 4). Considering the second Veronese

embedding of X ′ to P(1, 1, 1, 2) with coordinates z0, z1, z2 of weight 1 and z3 of weight 2,

one can describe X ′ as the quadric given by z0z1 − z22 . The projection of a general quadric

in P(1, 1, 1, 2) along the last coordinate gives the isomorphism of the general quadric and P2.

Thus X degenerates to X ′.

Example 2. Let X be a smooth cubic threefold. To X we associate the formal power series

ĜX(t) =
∑
k≥0

(2k)!(3k)!

(k!)5
t2k.

Let us call the Laurent polynomial

f =
(x+ y + 1)3

xyz
+ z ∈ C[x±1, y±1, z±1]

a mirror partner for X. Denote again the constant coefficient of fk by coeff1(f
k) and set

πf (t) =
∑
k≥0

coeff1(f
k)tk.
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It is easy to see that ĜX(t) = πf (t). Let ∆ ⊂ N ⊗ Q, where N = Z3, be the convex hull of

exponents of f , and define

∇ = {u | ⟨u, v⟩ ≥ −1 for all v ∈ ∆} ⊂ Hom(N ,Z)⊗Q

to be the polytope dual to ∆. That is, ∇ is given by

conv{(2, 0,−1), (0, 2,−1), (−2,−2,−1), (0, 0, 1)}.

Let T and T∨ be the toric Fano varieties whose fans are generated by the cones spanned by the

faces of, respectively, ∆ and ∇, so that T and T∨ are dual toric varieties. Let T̃∨ be a toric

variety whose rays are generated by the integral points on the boundary of ∇. One can check

that T̃∨ is a crepant resolution of T∨. Compactifying the family of fibres of f : (C×)3 → C using

the natural embedding (C×)3 ↪→ T̃∨, we get a pencil of K3 surfaces generated by its general

element and the boundary divisor of T̃∨. One can check that after a resolution of the base locus

of this family (by a sequence of blow ups of smooth curves) one arrives to the pencil of K3

surfaces u : Z → P1. One has −KZ = u−1(p), p ∈ P1. The pencil has four singular fibres:

two with ordinary double points; one (“over 0”) consisting of six smooth rational surfaces; and

one (“over ∞”) consisting of 14 smooth rational surfaces. The dual intersection complex of the

latter fibre is homotopic to a two-dimensional sphere (so that it is a central fibre of Kulikov’s

type III degeneration, see [43]). Note that the choice of T̃∨ and the resolution of the base locus

of the pencil is not unique, however all compactifications differ by flops, so the structure of the

reducible fibre does not depend on the resolution. Note also that h12(X) = 5 = 6 − 1 and

that dim |−KX | = 14. One can check that the Neron–Severi lattice of general element of the

family is

M3 = H ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−2 · 3⟩,
where H is a hyperbolic lattice, so that the pencil is a unique family of K3 surfaces Dol-

gachev–Nikulin dual to the family of anticanonical sections of X polarised by the generator

of Pic(X).

Since the degeneration at infinity is a Kulikov’s type III degeneration of K3 surfaces, its

monodromy is maximally unipotent. On the other hand, the monodromy at the fibre over 0 is

quasiunipotent, but not unipotent. Note also that X is not rational.

Define

f ′ =
(a+ b+ 1)2

abc
+ c(a+ b+ 1) ∈ C[a±1, b±1, c±1].

One can check that

πf ′(t) =
∑
k≥0

(2k)!(3k)!

(k!)5
t2k.

Proceeding as above, one can construct the pencil of K3 surfaces u′ : Z ′ → P1. Moreover, Z

and Z ′ differ by flops. This follows from the fact that general fibres of families given by f and f ′

are birational; the birational isomorphism is given by the change of variables

x = a, y = b, z = c(a+ b+ 1).

Let ∆′ be the convex hull of exponents of f ′, and let T ′ be the toric Fano variety whose fan is

generated by the cones spanned by the faces of ∆′. If the ambient four-dimensional projective

space for X has coordinates z0, z1, z2, z3, z4, then T can be described as the toric cubic given

by z1z2z3 − z30 , whilst T ′ can be described as the toric cubic given by z1z2z3 − z20z4. Thus, T

and T ′ are degenerations of X, and they deform one to each other.

In the following sections we generalise observations from Examples 1 and 2, add additional

observations, and discuss problems, questions, and conjectures related to the subject.
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3. Mirror partners

Let X be an n-dimensional Fano variety. Let 1 denote the fundamental class of X and

let K ⊂ H2(X,Z) be the set of classes of effective curves. The series

ĜX(t) =
∑

a∈Z≥0,β∈K
(−KX · β)!⟨τa1⟩β · t−KX ·β ∈ C[[t]],

where ⟨τa1⟩β is a one-pointed genus 0 Gromov–Witten invariant with descendants, see [46, VI-

2.1], is called the regularized quantum period (or a constant term of regularized I-series) for X.

We can write

ĜX(t) = 1 +

∞∑
k=2

k!ckt
k.

Roughly speaking, the coefficients ck encode the number of rational curves on X that pass

through algebraic cycles on X. The meaning of this series is the following. Homological Mirror

Symmetry suggests that quantum cohomology is the Hochschild cohomology of the Fukaya

category associated with X considered as a symplectic variety. Quantum multiplication (defined

by three-pointed genus 0 prime Gromov–Witten invariants) in this ring determines First and

Second Dubrovin’s connections. They give the quantum (regularized quantum, respectively) D-

module, and, according to [23], the series ĜX is the solution of regularized quantum D-module.

We come to our first question.

Question 3. The regularized quantum period ĜX is expected to characterise X. Can this be

proven? Is there an algorithmic way to reconstruct X from ĜX?

We expect that the regularized quantum D-module is isomorphic to the Picard–Fuchs one on

the mirror side. The numerical evidence for this is the foundation of the mirror correspondence

we consider. Moreover, we are looking for the dual to X as an algebraic torus (C×)n with a

complex-valued function. Choosing a basis we may assume that this function is represented by

a Laurent polynomial, so we associate this polynomial to X.

More precisely, let f ∈ C[x±1
1 , . . . , x±1

n ] be a Laurent polynomial. Associated to f is the clas-

sical period

πf (t) =

(
1

2πi

)n ∫
|x1|=...=|xn|=1

1

1− tf

dx1
x1

· · · dxn
xn

, t ∈ C, |t| ≪ ∞. (1)

Expanding πf (t) as a series in t one gets

πf (t) =

∞∑
k=0

coeff1(f
k)tk.

Here coeff1(f
k) denotes the constant coefficient of fk. When

ĜX = πf ,

mirror symmetry suggests that there is a close relationship between the geometry of X and f ,

and we say that f is a mirror partner (or weak LG model) for X.

Question 4. Every Fano manifold in dimension n ≤ 3 has a mirror partner [13, 50], many

examples are known in dimension 4 [14, 16]; in higher dimensions complete intersections in

projective spaces [50] and Grassmannians [55] are proven to have mirror partners. Does this

behaviour continue: that is, does every Fano manifold have a mirror partner?

Analogous to Question 3 above, we can ask:

Question 5. Is there an algorithmic way to reconstruct X from a mirror partner f? Note that

a partial answer to Question 5 is given in [17], via the technique of “Laurent inversion”.
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Example 6 (cf. Example 1). Consider P2. By Givental [23] this has regularized quantum period

ĜP2(t) =

∞∑
k=0

(3k)!

(k!)3
t3k = 1 + 6t3 + 90t6 + 1680t9 + 34650t12 + · · · .

The Laurent polynomial f = x+ y + 1/xy has classical period

πf (t) =

∞∑
k=0

(
3k

k, k, k

)
= ĜP2(t).

Hence f is a mirror partner to P2.

The meaning of the classical period is that it is a period of the family of fibres of the map

given by the Laurent polynomial; this period is given by taking residue of the form in the

integral (1) and integrating it over the cycle whose S1-neighborhood is the standard n-cycle

on the n-dimensional torus; see [13, 24, 49] for details. In other words, it is a solution for a

Picard–Fuchs differential operator for the family of fibres for the Laurent polynomial. We expect

that this period is a period for family of fibrewise compactified fibres as well. The coefficients of

the classical period are expected to be hypergeometric so, if one somehow knows “enough” terms

of the expansion of the period, a recurrence relation on the period coefficients can be obtained

(this is essentially linear algebra) and the Picard–Fuchs operator derived. Alternatively, Lairez’s

generalised Griffiths–Dwork algorithm [44] enables one to compute the Picard–Fuchs operator

directly from f with very high probability.

Question 7. What combinatorial or geometric properties of the Laurent polynomial give effec-

tive bounds on the number of terms of the classical period required to compute the Picard–Fuchs

differential operator?

4. Toric degenerations

Batyrev and Givental developed the mirror correspondence for toric varieties, and for com-

plete intersections in a toric variety. Deformation invariance of quantum cohomology in smooth

families suggests that the toric correspondence can be extended to the non-toric case via defor-

mations to toric varieties. More precisely, we associate a (possibly singular) toric variety Tf to f ,

given by taking the spanning fan (or face fan) of the Newton polytope ∆ = Newt f ⊂ N ⊗Z Q.

That is, we take the fan in the lattice N ∼= Zn whose cones span the faces of ∆. In the case of

Example 6 we obtain the toric variety Tf = P2. In general we can not expect that if f is a mirror

partner of a smooth Fano variety X, then X degenerates to Tf . Indeed, if f = f(x1, . . . , xn) is

a mirror partner to a Fano variety X and X degenerates to Tf , then f ′ = f(x21, x2, . . . , xn) is a

mirror partner of X again, while X does not degenerate to Tf ′ . To avoid a subtlety about finite

coverings of toric varieties, only Laurent polynomials f such that the exponents of monomials

in f generate the lattice N should be considered.

Example 8. Consider the Laurent polynomials

f = x+
1

x
+ y +

1

y
and g = xy +

y

x
+

1

xy
+

x

y
.

Both polynomials have period sequence

πf (t) = πg(t) =
∞∑
k=0

k∑
m=0

k!

(m!)2((k −m)!)2
t2k = 1 + 4t2 + 36t4 + 400t6 + 4900t8 + · · ·

which coincides with the regularized quantum period of P1 × P1. Indeed, Tf = P1 × P1, how-

ever Tg = P1 × P1/(Z/2) of anticanonical degree four. What has gone wrong here is that the
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exponents of monomials in g generate an index two sublattice inN . In fact the “correct” Laurent

polynomial supported on Newt g is

h = 2x+ xy + 2y +
y

x
+

2

x
+

1

xy
+

2

y
+

x

y
.

This has period sequence

πh(t) = 1 + 20t2 + 96t3 + 1188t4 + 10560t5 + 111440t6 + · · ·

and is seen to be a mirror partner for the smooth del Pezzo surface X(2,2) ⊂ P4 of anticanonical

degree four.

We arrive at the following:

Conjecture 9. Suppose that f is a mirror partner to X. Then X admits a Q-Gorenstein (qG-)

degeneration to the singular toric variety Tf .

This conjecture has been studied and is supported in many cases: for example, del Pezzo

surfaces, Fano threefolds, and complete intersections [2, 31, 32]. See also the beautiful three-

dimensional example by Petracci [47].

In order for this construction to make sense, we assume that ∆ contains the origin in its strict

interior. Note that this is not restrictive: if the origin is outside ∆ then the period of f must be

a constant, and hence f cannot be a mirror partner to a Fano manifold; if the origin is contained

in a proper face of ∆ then we can reduce to a lower-dimensional situation. We also require that

the vertices of ∆ are primitive lattice points, thus ensuring that Tf is a toric Fano variety. That

is, ∆ is a Fano polytope (see [33] for an overview of Fano polytopes).

Remark 10. Many of the combinatorial constructions described in this paper generalise if we

relax the requirement that the vertices of ∆ are primitive. These polytopes correspond to toric

Deligne–Mumford stacks.

It is important to emphasise that there is not a one-to-one correspondence between Laurent

polynomial mirrors and Fano manifolds. Indeed, typically if there exists one mirror partner f

for X then there exist infinitely many mirror partners1. Here the key process is mutation, which

we describe in §6. This generates new Laurent polynomials with the same classical period.

5. Calabi–Yau compactifications and toric Landau–Ginzburg models

Landau–Ginzburg (LG) models are one-dimensional families of Calabi–Yau varieties mirror

dual to anticanonical sections of Fano varieties. Thus, these families should be proper. We expect

that the proper families are compactifications of the mirror partners as families of hypersurfaces

in tori. However, simply being a compactification of a mirror partner is not sufficient to be an

appropriate mirror for Homological Mirror Symmetry. The important obstruction for this is

that the compactified family should be a family of Calabi–Yau varieties. This means that for

the mirror partner f there should exist a commutative diagram

(C×)n �
� //

f
��

Y

w

��
C C

where w is proper, and Y is a smooth (open) Calabi–Yau variety (so that fibres of w are also

Calabi–Yau). In this case we say that f satisfies the Calabi–Yau condition. In the framework of

recent interest to compactification of LG models over infinity, we may strengthen this condition

1We mean this in a non-trivial way. Clearly monomial change of basis will always preserve the period sequence.
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to the requirement of the existence of log Calabi–Yau compactification via the extension of the

diagram above to the commutative diagram

(C×)n �
� //

f

��

Y

w

��

� � // Z

u
��

C C �
� // P1

where Z is a proper variety such that u−1(∞) ∼ −KZ .

There is no general procedure for the construction of a (log) Calabi–Yau compactification;

moreover, the existence may depend on particular coefficients of Laurent polynomial f . However

in many cases one can use the log Calabi–Yau compactification construction described in [51].

Construction 11. Let ∆ be the Newton polytope of f and let ∇ be the dual polytope. Assume

that∇ is integral (that is, ∆ is reflexive), and let T∨ be the toric variety given by the spanning fan

of ∇. Assume that T∨ admits a crepant resolution T̃∨ → T∨. The family of fibres of f : (C×)n →
C compactifies to an anticanonical pencil in T∨. This compactified family F is generated by its

general member Fλ and the “fibre over infinity” F∞, which is nothing but the boundary divisor

of T̃∨. Finally, assume that the base set of the family Fλ∩F∞ is a union of smooth codimension

two components (possibly with multiplicities). Blow these components up one-by-one to resolve

the pencil. We obtain a family u : Z → P1 such that Z is smooth and u−1(∞) ∼ −KZ ; this is

the required log Calabi–Yau compactification.

Note that this procedure gives the description of the fibre u−1(∞), which is, up to codimension

one, the boundary divisor of T̃∨. It also gives the cohomology of Z.

Construction 11 is proven to be applicable (that is, all conditions are satisfied) for the

Minkowski mirrors [3] for Fano threefolds, and for complete intersections; see [51, 52]. The

main obstruction for the general case is that the polytope ∆ need not be reflexive. Fortunately,

at least in some cases, the construction can be generalised.

Example 12 ([54, Theorem 1.21]). Let X be a hypersurface of degree ad in

P(1, . . . , 1︸ ︷︷ ︸
α

, d),

where α = a(d− 1) + 1, with mirror partner

f =
(x1 + · · ·+ xα + 1)ad

x1 · · ·xα
.

Let ∆ be the Newton polytope of f . Compactify the family corresponding to f in the toric

variety T̃∨ defined by the spanning fan for the (non-integral) polytope ∇ = ∆∨; in fact T̃∨ is a

projective space. The support of the anticanonical divisor is the boundary divisor for T̃∨; how-

ever the member of the family is not linearly equivalent to the anticanonical divisor, because the

latter have multiplicity greater than one in one of the component of the boundary divisor of T̃∨.

After a carefully chosen resolution of the base locus for the compactified family, this component

can be contracted to a (possibly singular) point; this gives a log Calabi–Yau compactification.

This compactification has a singular point over infinity, which cannot be avoided: there is no

projective smooth log Calabi–Yau compactification of the mirror partner.

Problem 13. Generalise Construction 11 to the non-reflexive case.

Of course, the output of Construction 11 depends on a choice of a crepant resolution and

a choice of the sequence of blow-ups. However, Hironaka-type arguments show that all (log)

Calabi–Yau compactifications of a given Laurent polynomial differ by flops. Moreover, (log)

Calabi–Yau compactifications of two mutation equivalent mirror partners also differ by flops.
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Question 14. Is a (log) Calabi–Yau compactification of a mirror partner to a given Fano variety

uniquely defined up to flops?

A positive answer to Question 14 is indicated by del Pezzo surfaces and Picard rank one

Fano threefolds. Indeed, if we assume that mirror partners for smooth del Pezzo surfaces should

be rigid maximally mutable Laurent polynomial (see §7), then all such partners for a given

surface are mutational equivalent, so their compactifications are isomorphic. The same argument

works for Fano threefolds with very ample anticanonical class. Moreover, (log) Calabi–Yau

compactifications of Fano threefolds are families of K3 surfaces. These K3 surfaces are expected

to be mirror dual to anticanonical sections of Fano threefolds. In particular, the K3 surfaces

are expected to be Dolgachev–Nikulin dual (see [21]) to each other (cf. Example 2). Roughly

speaking, Dolgachev–Nikulin dual families of polarised K3 surfaces are those whose algebraic

and transcendental sublattices in the second cohomology lattice interchange. In particular, the

general anticanonical section of a Picard rank one Fano threefold is polarised by a lattice of rank

one. Thus its dual is polarised by a lattice of rank 19. Since there is a one-dimensional family of

such K3 surfaces, if we require the Dolgachev–Nikulin duality for LG models then the dual family

is unique. The known mirrors of Picard rank one Fano threefolds satisfy Dolgachev–Nikulin

duality, see [53, 5.4.3]. Note that this argument does not assume that the LG model we consider

is a Calabi–Yau compactification of a mirror partner.

The two requirements for mirror partners — correspondence to toric degenerations and exis-

tence of Calabi–Yau compactification — give rise to the following definition.

Definition 15. Let X be a smooth Fano variety of dimension n. A Laurent polynomial f ∈
C[x±1

1 , . . . , x±1
n ] is called a toric Landau–Ginzburg model of X if it satisfies the following three

conditions.

Period condition: The polynomial f is a mirror partner for X.

Calabi–Yau condition: The polynomial f satisfies the Calabi–Yau condition.

Toric condition: There is a flat degeneration X ⇝ Tf .

One can extend Definition 15 to the case of an arbitrary smooth projective variety X. More-

over, if X is a smooth projective variety, and D is an element of the vector space Pic(X) ⊗ C,
one can define a toric LG model for the pair (X,D) similarly to Definition 15; see [53, Part 3].

Question 16. Construction 11 suggests that a “good” mirror partner that satisfies the toric

condition (cf. Conjecture 9) will also satisfy the Calabi–Yau condition. Is this always true?

More generally, is it true that a mirror partner f for a Fano variety is a toric LG model? What

conditions on a Laurent polynomial guarantee this?

The following is the strong version of Mirror Symmetry of Variations of Hodge structures

conjecture.

Conjecture 17 (see [50, Conjecture 38]). Any smooth Fano variety has a toric LG model.

Note that we associate a series ĜX(t) and, thus, a toric LG model, to a smooth Fano varietyX.

However mirror symmetry associates an LG model (as an algebraic variety) to X as a symplectic

variety, or, in other words, to a pair of X and a divisor class on it. In fact we associate the

series ĜX(t) to a pair (X,−KX). In the similar way, restricting the Gromov–Witten series

to an orbit of the torus Hom(H2(X,Z),C×) to another orbit, generated by a class of another

divisor D, in an analogous way we can construct a series ĜD
X(t), define a toric LG model to it,

and claim Conjecture 17; see [57, §2].
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6. Mutation

Let f ∈ C[x±1, y±1], F ∈ C[x±1], where x = (x1, . . . , xn−1), and write

f =
∑
i∈Z

Pi(x)y
i, where Pi ∈ C[x±1].

Here all but finitely many of the Pi are zero. Suppose that there exists Ri ∈ C[x±1] such

that Pi = RiF
|i| for each i ∈ Z<0. Define the map

µ : C(x, y) → C(x, y)
xayb 7→ xaF byb.

Then we obtain a new Laurent polynomial

g = µ(f) =
∑

i∈Z<0

Riy
i +

∑
j∈Z≥0

PjF
jyj ∈ C[x±1, y±1].

Furthermore, by an application of the change-of-variables formula to (1) we find that

πf (t) = πg(t).

Hence if f is a mirror partner to a Fano manifold X, then g is also a mirror partner to X.

Definition 18. Let N be a lattice of rank n, and let w ∈ M = Hom(N ,Z) be a primitive

element in the dual lattice. Then w induces a grading on C[N ]. Let F ∈ C[w⊥ ∩ N ] be a

Laurent polynomial in the zeroth graded piece of C[N ], where

w⊥ ∩N = {v ∈ N | w(v) = 0}.

The pair (w,F ) defines an automorphism of C(N ) via

µ(w,F ) : C(N ) → C(N )

xv 7→ xvFw(v).

We say that f ∈ C[N ] is mutable with respect to (w,F ) if

g = µ(w,F )(f) ∈ C[N ].

When this is the case, we call g a mutation of f , and F a mutation factor of f .

For further details on mutation, see [3]. It was shown by Ilten [30] that if f and g are

connected via a sequence of mutations, then Tf and Tg are related via qG-deformation; see also

the generalisation [48].

Example 19 (see [5,22,37] and Example 1). Consider the Laurent polynomial f = x+y+1/xy.

Then f is a mirror partner to P2. We can write

f =
1

xy
(1 + xy2) + x.

Taking w = (2,−1) ∈ M and F = 1 + xy2 we obtain the mutation

g =
1

xy
+ x(1 + xy2)2

where g is also a mirror partner to P2. As expected, the corresponding toric variety Tg = P(1, 1, 4)
is a qG-deformation of P2, see Example 1. We can continue mutating, obtaining a tree of qG-

deformation equivalent toric varieties:
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P2

P(1, 1, 4)

P(1, 4, 25)

P(4, 25, 292)

P(25, 292, 4332) P(4, 292, 1692)

P(1, 25, 132)

P(25, 132, 1942) P(1, 132, 342)

Here the values (a, b, c) of the weighted projective space P(a2, b2, c2) satisfy the Markov equation

a2 + b2 + c2 = 3abc,

and are known as Markov triples. Mutation is equivalent, up to possible permutation of a, b,

and c, to the Markov mutation (a, b, c) 7→ (3bc − a, b, c) of Markov triples. Note that by [26],

qG-degenerations of P2 are exactly P(a2, b2, c2).

Question 20. The description of qG-deformations of P2 in Example 19 is particularly elegant.

Can a similar description be given for qG-deformations of P1×P1? Or, more generally, for each

of the ten smooth del Pezzo surfaces? Hacking–Prokhorov [26] did this in the Picard rank one

case, but what does this look like more generally?

Conjecture 21. Let f and g be mirror partners to X. Then f and g are connected via a

sequence of mutations.

This, in particular, gives a uniqueness of rational LG model of the same dimension as its dual

smooth Fano variety.

7. Rigid Maximally Mutable Laurent Polynomials

Any attempt at Fano classification via Laurent polynomials must address the following fun-

damental question.

Question 22. What class of Laurent polynomials are mirror partners to Fano varieties?

Here we have a conjectural answer: the rigid maximally mutable Laurent polynomials (rigid

MMLPs) introduced in [15]. Roughly speaking, a Laurent polynomial is maximally mutable if

it admits as many mutations as possible; an MMLP is rigid if it is uniquely determined by the

mutations that it admits. We now make this definition precise. We begin by establishing some

restrictions on the Laurent polynomials we consider.

Convention 23. A Laurent polynomial f ∈ C[N ] is normalised if for all vertices v of Newt f ,

the coefficient of the monomial xv in f is 1. We assume that all Laurent polynomials (and all

mutation factors) from here onwards are normalised. Similarly, although our Laurent polyno-

mials are defined over C, our expectation is that after an appropriate choice a basis on the torus

and scaling mirror partners have coefficients that are non-negative integers (although whether

this assumption is correct remains an open question). We require that all Laurent polynomials

(and all mutation factors) have non-negative integer coefficients. Furthermore, we require that

for f ∈ C[N ] the exponents of monomials in f generate N .

A transformation B ∈ SL(N ) is called a w-shear, where w ∈ M, if B |w⊥= Id. Consider a

mutation g = µ(w,F )(f). If we multiply the mutation factor F by a monomial xv, v ∈ w⊥ ∩ N ,
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then µ(w,Fxv)(f) is related to g by a w-shear. Thus considering F up to multiplication by

monomials in C[w⊥ ∩N ] gives g up to the action of w-shears. Let

µ
(w,Fxw⊥∩N )

(f)

denote the equivalence class given by w-shears of g.

Given a pair w ∈ M, w primitive, and F ∈ C[w⊥ ∩N ], write

L(w,F ) =
(
⟨w⟩, Fxw⊥∩N

)
.

Here ⟨w⟩ denotes the linear span of w. We now define the mutation graph of a Laurent polyno-

mial.

Definition 24. Let f ∈ C[N ] be a Laurent polynomial. Define the graph G with vertices

labelled by Laurent polynomials and edges labelled by pairs L(w,F ) as follows. Write ℓ(v) for

the label of a vertex v of G, and ℓ(e) for the label of an edge e of G.

(i) Begin with a vertex labelled by the Laurent polynomial f .

(ii) Given a vertex v, set g = ℓ(v). For each (w,F ), degF > 0, such that g is mutable with

respect to (w,F ), and either:

(a) there does not exist an edge with endpoint v and label L(w,F ); or

(b) for every edge e = vv′ with ℓ(e) = L(w,F ) we have that

ℓ(v′) ̸∈ µ
(w,Fxw⊥∩N )

(g)

pick a representative g′ ∈ µ
(w,Fxw⊥∩N )

(g) and add a new vertex v′ and edge vv′ labelled

by g′ and L(w,F ), respectively.

The mutation graph Gf of f is defined by removing the labels from the edges of G and changing

the labels of the vertices from G to the GL(N )-equivalence class of Newt g.

We partially order the mutation graphs of Laurent polynomials: Gf ≺ Gg if there exists a

label-preserving injection Gf ↪→ Gg.

Definition 25. A Laurent polynomial f is maximally mutable (or, for short, f is MMLP) if:

Newt f is a Fano polytope; the constant term of f is zero; and Gf is maximal with respect to ≺.

A maximally mutable Laurent polynomial f is rigid if for all g such that the constant term of g

is zero, Newt f = Newt g, and Gf = Gg, we have that f = g.

The close relationship between mutations of Laurent polynomials and cluster varieties suggests

that being rigid should be a “local” property in the mutation graph. We have the following.

Conjecture 26. Let f ∈ C[N ] be a Laurent polynomial such that Newt f is a Fano polytope

and the constant term of f is zero. Define

Sf = {(w,F ) | f is mutable with respect to (w,F )}

and, given any set S of pairs (w,F ) with w ∈ M, w primitive, and F ∈ C[w⊥ ∩N ], define

LP (S) =

{
f ∈ C[N ]

∣∣∣∣Newt f = P , the constant term of f is zero, and f is

mutable with respect to (w,F ) for all (w,F ) ∈ S

}
.

Then f is a rigid MMLP if and only if LNewt f (Sf ) = {f}.

In two dimensions the picture is clear (see [2] for an overview). Fano polygons can be classified

by their singularity content [4]. Those with singularity content (n,∅) for some n fall into exactly

ten mutation-equivalence classes [34, Theorem 1.2], and each mutation class supports exactly

one mutation class of rigid MMLPs [15, Theorem 3.9]. These rigid MMLPs correspond one-to-

one with qG-deformation families of smooth del Pezzo surfaces. Under this correspondence, the

classical period πf of a rigid MMLP f matches with the regularized quantum period ĜX of the

del Pezzo surface [13, §G]. We obtain the following result.
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Theorem 27 ([15, Theorem 3.12]). Mutation-equivalence classes of rigid MMLPs in two vari-

ables correspond one-to-one with qG-deformation families of smooth del Pezzo surfaces.

A similar result holds in dimension three, building on the results of [3, 13]:

Theorem 28 ([15, Theorem 4.1]). Mutation-equivalence classes of rigid MMLPs f such that

Newt f is a three-dimensional reflexive polytopes correspond one-to-one to the 98 deformation

families of three-dimensional Fano manifolds X with very ample −KX . Furthermore, each of

the 105 deformation families of three-dimensional Fano manifolds has a rigid MMLP mirror.

Furthermore, the four-dimensional mirrors in [14] have all been shown to be rigid MMLPs.

Notice that any simplicial terminal Fano polytope P ⊂ N ⊗Z Q supports a rigid MMLP

f =
∑

v∈vertP
xv.

The variety XP is a Q-factorial Fano toric variety with at worst terminal singularities. Such

varieties are know to be rigid under deformation [20]. We are naturally led to consider a wider

class of Fano varieties.

Conjecture 29 ([15, Conjecture 5.1]). Rigid MMLPs in n variables (up to mutation) are in one-

to-one correspondence with pairs (X,D), where X is a Fano n-fold of class TG2 with terminal

locally toric qG-rigid singularities and D ∈ |−KX | is a general element (up to qG-deformation).

Under this correspondence, the classical period πf of f agrees with the regularised quantum

period ĜX of X, and X admits a qG-degeneration to the toric variety Tf given by the spanning

fan of Newt f .

8. KKP and P=W conjectures

To approach the Katzarkov–Kontsevich–Pantev conjectures and Mirror P=W conjecture, we

start from the following claim. Let X be a smooth Fano variety of dimension n and let Y be a

Calabi–Yau compactification of its toric LG model. Set

kY = #
(
irreducible components of all reducible fibres of Y

)
−#

(
reducible fibres

)
.

Recall that the primitive Hodge numbers of X are defined as (see, for example, [25, p. 122])

hp,qpr (X) =

{
hp,q(X), when p ̸= q;

hp,p(X)− 1, when p = q.

Conjecture 30 ([56, Conjecture 1.1]). h1,n−1
pr (X) = kY .

This conjecture is proven for certain toric LG models of del Pezzo surfaces [54, Proposition

1.20], Fano threefolds [10, Main Theorem], and complete intersections [56, Theorem 1.2]; see

also [9]. Now we generalise Conjecture 30 to other Hodge numbers.

It turns out that not only the reducible fibres of the LG models themselves, but also the

monodromy around them, affects the invariants of Fano varieties. The following result is given

by comparing rationality of Picard rank one Fano threefolds studied by Iskovskikh and his

school and Golyshev’s computations of monodromies of their LG models (cf. Question 14 and

the discussion afterwards).

Theorem 31 ([36, Theorem 3.3]). Let X be a smooth Picard rank one Fano threefold whose

compactified LG model has a fibre with non-isolated singularities. Then the monodromy (in the

second cohomology) at this fibre is unipotent if and only if X is rational.

Problem 32. Generalise Theorem 31 to the higher Picard rank cases.

2A Fano variety X is of class TG if it admits a qG-degeneration with reduced fibres to a normal toric variety [2].
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The notion of log Calabi–Yau compactification is very close to the notion of a tame compact-

ified LG model. We present it here in a reduced form adapted to our needs.

Definition 33 ([35, Definition 2.4]). A tame compactified LG model is the data ((Z, f), DZ),

where

(i) Z is a smooth projective variety and f : Z → P1 is a flat morphism.

(ii) DZ = (∪iD
h
i ) ∪ (∪jD

v
j ) is a reduced normal crossings divisor such that

(a) Dv = ∪jD
v
j is a scheme-theoretical pole divisor of f , i.e. f−1(∞) = Dv. In partic-

ular ordDv
j
(f) = −1 for all j;

(b) each component Dh
i of Dh = ∪iD

h
i is smooth and horizontal for f , i.e. f |Dh

i
is a

flat morphism;

(c) the critical locus crit(f) ⊂ Z does not intersect Dh.

(iii) DZ is an anticanonical divisor on Z.

One says that ((Z, f), DZ) is a compactification of the LG model (Y,w) if in addition the following

holds:

(iv) Y = Z \DZ , f |Y = w.

From now on we assume that Dv = 0, so that w is proper. Note that the difference between

log Calabi–Yau compactifications of toric LG models and tame compactified LG models is that

we allow the former to have singularities over infinity and do not require the fibre over infinity

to be a normal crossing divisor. However the first issue does not effect statements about tame

compactified LG models, and the second does not appear in cases we know (say, in all cases

when Construction 11 is applicable).

In the following, all cohomology groups are taken with complex coefficients for the sake of

simplicity. Let X be a Fano manifold. We assume that its mirror dual object (Y,w) admits

a tame compactification. In [35] Hodge-theoretic invariants fp,q(Y,w) of an LG model are

constructed. We define

fp,q(Y,w) = dimGrFq Hp+q(Y, V ),

where V is a smooth fibre of w and Hp+q(Y, V ) is equipped with the natural mixed Hodge

structure on the relative cohomology. This is equivalent to the definition in [27,35].

Conjecture 34 ([35, Conjecture 3.7]). Let X and (Y,w) form a homological mirror pair. Then

fp,q(Y,w) = hdimX−p,q(X). (2)

Conjecture 34 holds for Calabi–Yau compactifications of certain toric LG models of del Pezzo

surfaces [45, Theorem 12(ii)] and Fano threefolds [10, Corollary].

The motivation of the definition of another numbers that play a role of Hodge numbers for

LG models comes from Homological Mirror Symmetry, Hochschild homology identifications, and

the identification of the monodromy operator with the Serre functor. Namely, assume that the

LG model (Y,w) is of Fano type (see [45, Definition 7]) and is a mirror of a projective Fano

manifold X, dimX = dimY . Then by Homological Mirror Symmetry conjecture one expects

an equivalence of categories

Db(coh X) ≃ FS((Y,w), ωY ), (3)

where Db(coh X) is the bounded derived category of coherent sheaves on X and FS((Y,w), ωY )

is the Fukaya–Seidel category of the LG model (Y,w) with an appropriate symplectic form ωY .

This equivalence induces for each a an isomorphism of the Hochschild homology spaces

HHa(D
b(coh X)) ≃ HHa(FS((Y,w), ωY )).

It is known that

HHa(D
b(coh X)) ≃

⊕
p−q=a

Hp(X,Ωq
X), (4)
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and it is expected that

HHa(FS((Y,w), ωY )) ≃ Hn+a(Y, V ), (5)

where, as above, V is a smooth fibre of w. The equivalence (3) and isomorphisms (4) and (5)

suggest an isomorphism

Hn+a(Y, V ) =
⊕

p−q=a

Hp(X,Ωq
X).

Moreover, the equivalence (3) identifies the Serre functors SX and SY on the two categories.

The functor SX acts on the cohomology H∗(X), and the logarithm of this operator is equal (up

to a sign) to the cup-product with c1(KX). Since X is Fano, the operator c1(KX) ∪ ( · ) is a

Lefschetz operator on the space ⊕p−q=aH
p(X,Ωq

X) for each a. On the other hand, the Serre

functor SY induces an operator on the space Hn+a(Y, V ) which is the inverse of the monodromy

transformation M obtained by letting V vary in a small circle around ∞. This suggests that

the weight filtration for the nilpotent operator c1(KX) ∪ ( · ) on the space
⊕

p−q=aH
p(X,Ωq

X),

that gives Hodge numbers for X, should coincide with the similar filtration for the logarithm N

of the operator M on Hn+a(Y, V ). More precise, N gives a filtration Mon on H i(Y, V ). We set

hp,q(Y,w) = dimGrMon
p Hq(Y, V ).

Conjecture 35 (see [35, Conjecture 3.6]). Let (Y,w) be a LG model admitting a tame compact-

ification. Then

hp,q(Y,w) = fp,q(Y,w). (6)

The following result is an extension of the main result of Shamoto [58].

Proposition 36 ([38]). Let (Y,w) be a LG model, and assume that w is a proper map. If H i(Y )

is Hodge–Tate for all i, then

hp,q(Y,w) = fp,q(Y,w)

for all p, q.

Note that the output of the log Calabi–Yau procedure is of Hodge–Tate type provided the

components of the blown up base locus are of Hodge–Tate type as well, which usually holds. In

particular, this holds for del Pezzo surfaces, Fano threefolds and complete intersections.

Equalities (2) and (6) also hold for a smooth toric weak Fano threefolds X for which the

map H2(X) → H2(D) is injective for D a smooth anticanonical divisor, see [27].

Mirror symmetry constructions for Fano varietyX consider it as both algebraic and symplectic

variety. In other words, the input is an algebraic variety X equipped with a class of compexified

symplectic form. If we do not mention it, then this symplectic form is anticanonical. However

mirror duality can be strengthened: one can consider not a class of (anticanonical) divisors, but

a certain simple normal crossing anticanonical divisor D on X. We call such a pair (X,D) log

Calabi–Yau. We abuse notation and call U = X\D log Calabi–Yau if the pair (X,D) is. One can

classically equip an open Calabi–Yau variety U = X \D by a mixed Hodge structure. Ignoring

the weight filtration on it, one can define Hodge numbers hp,q(U). Mirror symmetry predicts that

for the dual open Calabi–Yau variety U∨ one gets hp,q(U) = hn−p,q(U∨) for n = dimU = dimU∨.

The natural question is: can this prediction be extended to a duality of mixed Hodge structures,

that is, to involve the weight filtration to the duality? The answer on this question is given by

the Mirror P=W conjecture.

As we have mentioned above, if U and U∨ are mirror log Calabi–Yau manifolds, then we expect

at first approximation thatH∗
c (U) andH∗

c (U
∨) are isomorphic as vector spaces (see [35, Table 1])

with different gradings. By Poincaré duality, H i
c(U) ∼= HdimU−i(U), hence we may equivalently

deal with the cohomology rings of U and U∨. Both H∗(U) and H∗(U∨) admit a mixed Hodge
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structure, which is composed of a decreasing Hodge filtration F • and an increasing weight

filtration W•. We define

hp,q(U) = dimGrqF Hp+q(U).

In analogy with classical mirror symmetry for compact Calabi–Yau varieties, we might expect

that if U and U∨ are a homological mirror pair of log Calabi–Yau manifolds of dimension n,

then

hp,q(U) = hn−p,q(U∨). (7)

This seems to be true — it is checked in many cases in [38] — but it ignores the weight filtration

in cohomology. It would be desirable to determine whether the weight filtration on H∗(U) is

reflected by a filtration on the cohomology of U∨. The first step in this is to remark that the

geometry of D = X \U and the residues of holomorphic forms on X with log poles along D can

be used to determine the weight filtration W• on H∗(U). The weight filtration depends on the

existence of a projective simple normal crossings compactification X of U , but is independent of

the choice of compactification, hence it is a canonical invariant of U . So if a mirror dual filtration

exists, is plausible that it can be constructed via information dual to that of the components

of D but be independent the choice of D.

Starting with a log Calabi–Yau manifold U and a simple normal crossings compactification X

of U with D = X \ U , each irreducible component Di, i = 1, . . . , k, of D determines a regular

function wi on the mirror U∨, see [1, 6, 7]. Therefore, if there is a filtration on H∗(U∨) dual to

the weight filtration on H∗(U), it should be determined by the functions w1, . . . , wk.

There are several possible filtrations on cohomology that can be constructed from (w1, . . . , wk),

but the most relevant seems to be the flag filtration [19], which is defined as follows. Let w denote

the map (w1, . . . , wk) : U
∨ → Ck. Choose a generic flag of linear subspaces

Λk ⊂ Λk−1 ⊂ · · · ⊂ Λ0 = Ck

so that dimΛi = k− i and let U∨
i = w−1(Λi). Then, for any coefficient ring R, the flag filtration

on H∗(U∨;R) is defined as3

PrH
j(U∨;R) = ker(Hj(U∨;R) −→ Hj(U∨

r+1;R)).

According to de Cataldo and Migliorini [19], if w is proper, then P• can be identified with

the perverse Leray filtration of the map w, hence it only depends on the map w. In all of the cases

that we know of, the maps w1, . . . , wk generate C[U∨], in which case the map w : U∨ → im(U∨)

is the affinization map of U∨, hence, in these cases at least, P• is intrinsic to U∨ and does not

depend on our original choice of w1, . . . , wk. Thus we have two filtrations, which are built from

data which correspond to one another under mirror symmetry, and which are intrinsic to U

and U∨ respectively.

Definition 37 ([38, Definition 1.1]). Consider a quasiprojective variety M over the complex

numbers C and assume that the affinization map faff : M → Spec(C[M ]) is proper. We define

the perverse mixed Hodge polynomial of a quasiprojective variety M to be

PWM (u, t, w, p) =
∑
a,b,r,s

(dimGraF GrWs+bGrPr (H
s(M)))uatswbpr,

where P• is the flag filtration taken with respect to faff and W denotes the C-linear extension
of the weight filtration.

The following is called Mirror P=W conjecture.

3Note that this agrees with the definition of [19] up to a shift by j.
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Conjecture 38 ([38, Conjecture 1.2]). Let U be a log Calabi–Yau variety and assume that its

homological mirror U∨ is also a log Calabi–Yau variety whose dimension is the same as that

of U . Let n = dimU = dimU∨. Then

PWU (u
−1t−2, t, p, w)untn = PWU∨(u, t, w, p).

Theorem 39 ([38]). Let (X,D) be a pair consisting of smooth Fano surface or threefold X and

a smooth anticanonical divisor D on it. Let (Y,w) be its compactified LG model constructed

in [8] and [51]. Then Conjecture 38 holds for them.

When the map w is proper we expect that X admits a smooth anticanonical divisor D so

that X \D and Y form a homological mirror pair. Therefore, equality (7) should hold between Y

and X \D. Furthermore, we expect that a general smooth fibre V of w is Calabi–Yau and is

the homological mirror of D, so we expect that

hp,q(V ) = hdimX−1−p,q(D). (8)

Conjecture 38 links equality (2) with equalities (7) and (8).

Theorem 40 ([38]). Let X be a projective manifold with a smooth anticanonical divisor D in

it, and let U = X \ D. Let (Y,w) be a LG model so that w is proper and let V be a smooth

fibre of w. If V and D satisfy (8), and Y and U satisfy equality (7), then Conjecture 38 implies

equality (2).

Theorem 41 ( [38]). Let X be a Fano manifold with a smooth anticanonical divisor D in X,

and (Y,w) be a LG model so that w is proper. Assume that Conjecture 38 holds between Y

and U = X \D. Then

fp,q(Y,w) = hp,q(Y,w).

9. Anticanonical linear systems

Conjecture 30 relates the number of components of LG models with the Hodge number of the

corresponding Fano varieties. Katzarkov–Kontsevich–Pantev conjectures generalise this conjec-

ture to other Hodge numbers. More precisely, [27, Theorem 4.8] says that for LG model (Y,w)

for a Fano threefold the equality f1,1(Y,w) = kY holds if the LG model satisfies certain natu-

ral conditions provided by Construction 11. Thus, Construction 11 plays an important role in

numerical conjectures for Fano–LG correspondence. Let us discuss some other implications.

Let X be a smooth Fano threefold and let f be its toric LG model. Let ∆ be a Newton

polytope for f . Consider the flat degeneration of X to the toric Fano variety Tf whose spanning

polytope is ∆. Since this degeneration is flat, one has

χ (OX(−KX)) = χ
(
OTf

(−KX)
)
.

On the other hand, since Tf is toric, its singularities are Kawamata log terminal by [40, Propo-

sition 3.7]. Applying Kodaira vanishing (see, for example, [41, Theorem 2.70]) to X and Tf , one

gets

hi(OX(−KX)) = hi(OTf
(−KTf

)) = 0

for i > 0, so that

h0(−KX) = h0(−KTf
).

The anticanonical linear system of Tf can be described as a linear system of Laurent polynomials

supported on the dual polytope ∇, see, for instance, [18, §6.3]. Suppose that Construction 11 is

applicable for f . In particular, ∇ is integral and T∨ admits a toric crepant resolution T̃∨ → T∨.

The dimension of the anticanonical linear system of Tf is the number of integral points on the

boundary of ∇. Since these boundary points are in one-to-one correspondence with boundary



LAURENT POLYNOMIALS IN MIRROR SYMMETRY: WHY AND HOW? 17

divisors of T̃∨ and, thus, with irreducible components of the fibre u−1(∞). This motivates the

following conjecture.

Conjecture 42 ([11, Conjecture 1.6]). Let X be a smooth Fano variety, and let (Z, u) be a log

Calabi–Yau compactification of its toric LG model f . Then the fibre u−1(∞) consists of

χ
(
OX(−KX)

)
− 1 = h0

(
OX(−KX)

)
− 1

irreducible components.

As we have mentioned, this conjecture is proved for rigid maximally-mutable toric LG models

of smooth Fano threefolds and for Givental’s toric LG models of “good” toric Fano varieties,

see [11, Theorem 1.7]. Moreover, from Example 12 one can see that Conjecture 42 holds even

in the cases when Construction 11 is not applicable.

Remark 43. Let us notice that Conjecture 42 together with Conjecture 17 imply that

h0
(
OX(−KX)

)
≥ 2,

which is only known for dim(X) ≤ 5 (see [29, Theorem 1.7], [28, Theorem 1.1.1]). Note also

that Kawamata’s [39, Conjecture 2.1] implies that h0(OX(−KX)) ≥ 1.

Homological Mirror Symmetry conjecture suggests that the monodromy around u−1(∞) is

maximally unipotent (see [35, §2.2]). Thus, if the fibre u−1(∞) is a divisor with simple normal

crossing singularities, then its dual intersection complex is expected to be homeomorphic to a

sphere of dimension n− 1 (see [42, Question 7]). This follows from [42, Proposition 8] for n ≤ 5.

However, we cannot always expect u−1(∞) to be a divisor with simple normal crossing singu-

larities. The example is a toric LG model (Y,w) a smooth intersection of two general sextics

in P(1, 1, 1, 2, 2, 3, 3), see [11, Example 1.9]. On the other hand, if we take a log resolution of

the pair (Z, u−1(∞)), that is, if we blow up Z to make the fibre over infinity a normal crossing

divisor, then the dual intersection graph is homeomorphic to a 3-dimensional sphere, so we can

expect that the answer on analogue of [42, Question 7] holds.

Problem 44. Define a dual intersection complex for the degenerations of Calabi–Yau varieties.

We expect that, at least for LG models, the answer on [42, Question 7] for this definition is

positive, cf. Example 12.
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