Denis M. Krichevsky
Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes
Krichevsky, Denis M.; Shi, Lei; Baturin, Vladimir S.; Rybkovsky, Dmitry V.; Wu, Yangliu; Fedotov, Pavel V.; Obraztsova, Elena D.; Kapralov, Pavel O.; Shilina, Polina V.; Fung, Kayleigh; Stoppiello, Craig T.; Belotelov, Vladimir I.; Khlobystov, Andrei; Chernov, Alexander I.
Authors
Lei Shi
Vladimir S. Baturin
Dmitry V. Rybkovsky
Yangliu Wu
Pavel V. Fedotov
Elena D. Obraztsova
Pavel O. Kapralov
Polina V. Shilina
Kayleigh Fung
Craig T. Stoppiello
Vladimir I. Belotelov
Professor Andrei Khlobystov ANDREI.KHLOBYSTOV@NOTTINGHAM.AC.UK
PROFESSOR OF CHEMICAL NANOSCIENCE
Alexander I. Chernov
Abstract
Molecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons. Recently, the formation of atomically precise graphene nanoribbons inside SWCNTs has been reported. However, there have been only a limited amount of approaches to form ordered magnetic structures inside the nanotube channels and the creation of magnetic nanoribbons is still lacking. In this work we synthesize and reveal the properties of cobalt-phthalocyanine based nanoribbons (CoPcNRs) encapsulated in SWCNTs. Raman spectroscopy, transmission electron microscopy, absorption spectroscopy, and density functional theory calculations allowed us to confirm the encapsulation and to reveal the specific fingerprints of CoPcNRs. The magnetic properties were studied by transverse magnetooptical Kerr effect measurements, which indicated a strong difference in comparison with the pristine unfilled SWCNTs due to the impact of Co incorporated atoms. We anticipate that this approach of polymerization of encapsulated magnetic molecules inside SWCNTs will result in a diverse class of protected low-dimensional ordered magnetic materials for various applications.
Citation
Krichevsky, D. M., Shi, L., Baturin, V. S., Rybkovsky, D. V., Wu, Y., Fedotov, P. V., Obraztsova, E. D., Kapralov, P. O., Shilina, P. V., Fung, K., Stoppiello, C. T., Belotelov, V. I., Khlobystov, A., & Chernov, A. I. (2022). Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes. Nanoscale, 14(5), 1978-1989. https://doi.org/10.1039/d1nr06179h
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 27, 2021 |
Online Publication Date | Dec 27, 2021 |
Publication Date | Feb 7, 2022 |
Deposit Date | Mar 18, 2022 |
Publicly Available Date | Dec 28, 2022 |
Journal | Nanoscale |
Print ISSN | 2040-3364 |
Electronic ISSN | 2040-3372 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 5 |
Pages | 1978-1989 |
DOI | https://doi.org/10.1039/d1nr06179h |
Keywords | General Materials Science |
Public URL | https://nottingham-repository.worktribe.com/output/7353465 |
Publisher URL | https://pubs.rsc.org/en/content/articlelanding/2022/NR/D1NR06179H |
Files
Supporting Information V4
(407 Kb)
PDF
Magnetic Nanoribbons With Embedded Cobalt Grown Inside SWCNTs Revised V4
(1 Mb)
PDF
You might also like
Benzene-1,2,4,5-tetrol
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search