Skip to main content

Research Repository

Advanced Search

Spots: breathing, drifting and scattering in a neural field model

Coombes, Stephen; Schmidt, Helmut; Avitabile, Daniele

Authors

Helmut Schmidt pmxhs@nottingham.ac.uk

Daniele Avitabile Daniele.Avitabile@nottingham.ac.uk



Contributors

Stephen Coombs
Editor

Peter Beim Graben
Editor

Roland Potthast
Editor

James Wright
Editor

Abstract

Two dimensional neural field models with short range excitation and long range inhibition can exhibit localised solutions in the form of spots. Moreover, with the inclusion of a spike frequency adaptation current, these models can also support breathers and travelling spots. In this chapter we show how to analyse the proper- ties of spots in a neural field model with linear spike frequency adaptation. For a Heaviside firing rate function we use an interface description to derive a set of four nonlinear ordinary differential equations to describe the width of a spot, and show how a stationary solution can undergo a Hopf instability leading to a branch of pe- riodic solutions (breathers). For smooth firing rate functions we develop numerical codes for the evolution of the full space-time model and perform a numerical bifur- cation analysis of radially symmetric solutions. An amplitude equation for analysing breathing behaviour in the vicinity of the bifurcation point is determined. The con- dition for a drift instability is also derived and a center manifold reduction is used to describe a slowly moving spot in the vicinity of this bifurcation. This analysis is extended to cover the case of two slowly moving spots, and establishes that these will reflect from each other in a head-on collision.

Publication Date Jun 17, 2014
Peer Reviewed Peer Reviewed
Book Title Neural fields: theory and applications
ISBN 9783642545931
APA6 Citation Coombes, S., Schmidt, H., & Avitabile, D. (2014). Spots: breathing, drifting and scattering in a neural field model. In P. Beim Graben, S. Coombs, R. Potthast, & J. Wright (Eds.), Neural fields: theory and applicationsSpringer
Publisher URL http://www.springer.com/us/book/9783642545924
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf
;