Research Repository

See what's under the surface

Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors

Rodriguez Gutierrez, D.; Awwad, A.; Meijer, Lisethe; Manita, M.; Jaspan, T.; Dineen, Robert A.; Grundy, Richard G.; Auer, Dorothee P.

Authors

D. Rodriguez Gutierrez

A. Awwad

Lisethe Meijer

M. Manita

T. Jaspan

Robert A. Dineen

Richard G. Grundy

Dorothee P. Auer

Abstract

BACKGROUND AND PURPOSE: Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features.
MATERIALS AND METHODS: This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data.
RESULTS: ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix.
CONCLUSIONS: Support vector machine–based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology.

Journal Article Type Article
Journal American Journal of Neuroradiology
Print ISSN 0195-6108
Electronic ISSN 1460-2431
Publisher American Society of Neuroradiology
Peer Reviewed Peer Reviewed
Volume 35
Issue 5
DOI https://doi.org/10.3174/ajnr.A3784
Publisher URL http://www.ajnr.org/content/35/5/1009
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf

Files

1009.full.pdf (911 Kb)
PDF

Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf



Downloadable Citations