Oǧuz Korman
A Novel Flux Barrier Parametrization for Synchronous Reluctance Machines
Korman, Oǧuz; Di Nardo, Mauro; Degano, Michele; Gerada, Chris
Authors
Mauro Di Nardo
Professor MICHELE DEGANO Michele.Degano@nottingham.ac.uk
PROFESSOR OF ADVANCED ELECTRICAL MACHINES
Professor CHRISTOPHER GERADA CHRIS.GERADA@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTRICAL MACHINES
Abstract
This paper presents a novel parametrization for the flux barrier profiles of synchronous reluctance and permanent magnet assisted reluctance machines. In literature there are several methods used to design rotor flux barriers of various types, however the vast majority use only a few parameters to characterize their shape. These approaches are proven to be effective in terms of simplicity and computational burden required to achieve an optimal design. However, simplified parametrizations certainly decrease the degrees of freedom when designing the whole barrier shape. In this paper, an attempt to increase the degrees of freedom, introducing a novel rotor flux barrier parametrization, is presented. The method proposed uses natural splines, defined by the positions of a set of control points, to form the shape of the flux barriers. The spline and state-of-the-art barrier profiles are compared from both electromagnetic and mechanical perspectives. The results of this investigation show that by increasing the degrees of freedom it is possible to obtain better performance characteristics. The proposed parametrization is applied to a 6-pole synchronous reluctance motor and its permanent magnet assisted variant, optimized for a traction application. A prototype has been manufactured and tested to experimentally validate the design methodology.
Citation
Korman, O., Di Nardo, M., Degano, M., & Gerada, C. (2021). A Novel Flux Barrier Parametrization for Synchronous Reluctance Machines. IEEE Transactions on Energy Conversion, 37(1), 675-684. https://doi.org/10.1109/TEC.2021.3099628
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 16, 2021 |
Online Publication Date | Jul 26, 2021 |
Publication Date | Jul 26, 2021 |
Deposit Date | Oct 15, 2021 |
Publicly Available Date | Oct 15, 2021 |
Journal | IEEE Transactions on Energy Conversion |
Print ISSN | 0885-8969 |
Electronic ISSN | 1558-0059 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 37 |
Issue | 1 |
Pages | 675-684 |
DOI | https://doi.org/10.1109/TEC.2021.3099628 |
Keywords | Electrical and Electronic Engineering; Energy Engineering and Power Technology |
Public URL | https://nottingham-repository.worktribe.com/output/6460903 |
Publisher URL | https://ieeexplore.ieee.org/document/9496213 |
Additional Information | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Files
A Novel Flux Barrier Parametrization for Synchronous Reluctance Machines
(1.2 Mb)
PDF
You might also like
Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines
(2024)
Journal Article
Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search