Skip to main content

Research Repository

Advanced Search

High Speed Synchronous Reluctance Machines: Modeling, Design and Limits

Gallicchio, Gianvito; Di Nardo, Mauro; Palmieri, Marco; Marfoli, Alessandro; Degano, Michele; Gerada, Chris; Cupertino, Francesco

High Speed Synchronous Reluctance Machines: Modeling, Design and Limits Thumbnail


Authors

Gianvito Gallicchio

Mauro Di Nardo

Marco Palmieri

Alessandro Marfoli

Francesco Cupertino



Abstract

An important barrier to the adoption and acceptance of synchronous reluctance (SyR) machines in different applications lies in their non-standardized design procedure. The conflicting requirements incurring at high speeds among electromagnetic torque and structural and thermal limitations can significantly influence the machine performance, leading to a real design challenge. Analytical models used for design purpose lack in accuracy and force the designer to heavily rely on finite element analysis (FEA), at least during the design refinement stage. This becomes even more computationally expensive as the speed increases, as the evaluation of the rotor structural behaviour is required. This work presents a computationally efficient hybrid analytical-FE design process able to consider all the main limiting design aspects of SyR machine incurring at high speed, namely structural and thermal. As a vessel to investigate the proposed design routine accuracy, several high speed SyR machines have been designed for a wide range of operational speeds (up to 70 krpm). The thermal and mechanical factors limiting the high speed operation are deeply analyzed aiming at maximize the mechanical output power. The proposed design approach is then validated by comparison against experimental measurements on a 5 kW-50 krpm SyR prototype.

Citation

Gallicchio, G., Di Nardo, M., Palmieri, M., Marfoli, A., Degano, M., Gerada, C., & Cupertino, F. (2022). High Speed Synchronous Reluctance Machines: Modeling, Design and Limits. IEEE Transactions on Energy Conversion, 37(1), 585-597. https://doi.org/10.1109/TEC.2021.3086879

Journal Article Type Article
Acceptance Date May 29, 2021
Online Publication Date Jun 7, 2021
Publication Date Mar 1, 2022
Deposit Date Sep 15, 2021
Publicly Available Date Sep 15, 2021
Journal IEEE Transactions on Energy Conversion
Print ISSN 0885-8969
Electronic ISSN 1558-0059
Publisher Institute of Electrical and Electronics Engineers
Peer Reviewed Peer Reviewed
Volume 37
Issue 1
Pages 585-597
DOI https://doi.org/10.1109/TEC.2021.3086879
Keywords Electrical and Electronic Engineering; Energy Engineering and Power Technology
Public URL https://nottingham-repository.worktribe.com/output/6241490
Publisher URL https://ieeexplore.ieee.org/document/9447931
Additional Information © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Files





Downloadable Citations