S.M. Peresada
Robust Direct Field Oriented Control Of Induction Generator
Peresada, S.M.; Bozhko, S.V.; Kovbasa, S.M.; Nikonenko, E.O.
Authors
Professor SERHIY BOZHKO serhiy.bozhko@nottingham.ac.uk
PROFESSOR OF AIRCRAFT ELECTRIC POWER SYSTEMS
S.M. Kovbasa
E.O. Nikonenko
Abstract
A novel and robust field oriented vector control method for standalone induction generators (IG) is presented. The proposed controller exploits the concept of direct field orientation and provides asymptotic rotor flux modulus and DClink voltage regulations when a DC-load is constant or slowly varying. Flux subsystem, designed using Lyapunov’s second method, has, in contrast to standard structures, closed loop properties and therefore is robust with respect to rotor resistance variations. A decomposition approach on the base of the two-time scale separation of the voltage and torque current dynamics is used for design of the voltage subsystem. The feedback linearizing voltage controller is designed using a steady state IG power balance equation. The resulting quasi-linear dynamics of the voltage control loop allows use of simple controllers tuning procedure and provides an improved dynamic performance for variable speed and flux operation. Results of a comparative experimental study with standard indirect field oriented control are presented. In contrast to existing solutions, the designed controller provides system performances stabilization when speed and flux are varying. It is experimentally shown that a robust field oriented controller ensures robust flux regulation and robust stabilization of the torque current dynamics leading to improved energy efficiency of the electromechanical conversion process. The proposed controller is suitable for energy generation systems with variable speed operation. References 18, figures 8
Citation
Peresada, S., Bozhko, S., Kovbasa, S., & Nikonenko, E. (2021). Robust Direct Field Oriented Control Of Induction Generator. Tekhnichna Elektrodynamika, 2021(4), 14-24. https://doi.org/10.15407/techned2021.04.014
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 17, 2021 |
Online Publication Date | Jun 17, 2021 |
Publication Date | Jun 24, 2021 |
Deposit Date | Nov 28, 2024 |
Publicly Available Date | Dec 9, 2024 |
Journal | Tekhnichna Elektrodynamika |
Print ISSN | 1607-7970 |
Electronic ISSN | 2218-1903 |
Publisher | National Academy of Sciences of Ukraine, Department of Physical and Technical Problems of Power Engineering |
Peer Reviewed | Peer Reviewed |
Volume | 2021 |
Issue | 4 |
Pages | 14-24 |
DOI | https://doi.org/10.15407/techned2021.04.014 |
Keywords | Electrical and Electronic Engineering; Energy Engineering and Power Technology |
Public URL | https://nottingham-repository.worktribe.com/output/5724696 |
Publisher URL | https://techned.org.ua/index.php/techned/article/view/183 |
Files
ROBUST DIRECT VECTOR CONTROL ALGORITHM FOR ASYNCHRONOUS GENERATOR
(431 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search