Skip to main content

Research Repository

Advanced Search

Performance of linear mixed models and random forests for spatial prediction of soil pH

Makungwe, Mirriam; Chabala, Lydia Mumbi; Chishala, Benson H.; Lark, R. Murray

Performance of linear mixed models and random forests for spatial prediction of soil pH Thumbnail


Authors

Mirriam Makungwe

Lydia Mumbi Chabala

Benson H. Chishala

MURRAY LARK MURRAY.LARK@NOTTINGHAM.AC.UK
Professor of Geoinformatics



Abstract

Digital soil maps describe the spatial variation of soil and provide important information on spatial variation of soil properties which provides policy makers with a synoptic view of the state of the soil. This paper presents a study to tackle the task of how to map the spatial variation of soil pH across Zambia. This was part of a project to assess suitability for rice production across the country. Legacy data on the target variable were available along with additional exhaustive environmental covariates as potential predictor variables. We had the option of undertaking spatial prediction by geostatistical or machine learning methods. We set out to compare the approaches from the selection of predictor variables through to model validation, and to test the predictors on a set of validation observations. We also addressed the problem of how to robustly validate models from legacy data when these have, as is often the case, a strongly clustered spatial distribution. The validation statistics results showed that the empirical best linear unbiased predictor (EBLUP) with the only fixed effect a constant mean (ordinary kriging) performed better than the other methods. Random forests had the largest model-based estimates of the expected squared errors. We also noticed that the random forest algorithm was prone to select as “important” spatially correlated random variables which we had simulated.

Citation

Makungwe, M., Chabala, L. M., Chishala, B. H., & Lark, R. M. (2021). Performance of linear mixed models and random forests for spatial prediction of soil pH. Geoderma, 397, Article 115079. https://doi.org/10.1016/j.geoderma.2021.115079

Journal Article Type Article
Acceptance Date Mar 5, 2021
Online Publication Date Apr 2, 2021
Publication Date Sep 1, 2021
Deposit Date Oct 6, 2021
Publicly Available Date Apr 3, 2023
Journal Geoderma
Print ISSN 0016-7061
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 397
Article Number 115079
DOI https://doi.org/10.1016/j.geoderma.2021.115079
Public URL https://nottingham-repository.worktribe.com/output/5481181
Publisher URL https://www.sciencedirect.com/science/article/pii/S0016706121001592

Files




You might also like



Downloadable Citations