Chun Hang Lau
Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9
Lau, Chun Hang; Bolt, Edward L.
Abstract
CRISPR systems build adaptive immunity against mobile genetic elements by DNA capture and integration catalysed by Cas1–Cas2 protein complexes. Recent studies suggested that CRISPR repeats and adaptation module originated from a novel type of DNA transposons called casposons. Casposons encode a Cas1 homologue called casposase that alone integrates into target molecules single and double-stranded DNA containing terminal inverted repeats (TIRs) from casposons. A recent study showed Methanosarcina mazei casposase is able to integrate random DNA oligonucleotides, followed up in this work using Acidoprofundum boonei casposase, from which we also observe promiscuous substrate integration. Here we first show that the substrate flexibility of Acidoprofundum boonei casposase extends to random integration of DNA without TIRs, including integration of a functional gene. We then used this to investigate targeting of the casposase-catalysed DNA integration reactions to specific DNA sites that would allow insertion of defined DNA payloads. Casposase–Cas9 fusions were engineered that were catalytically proficient in vitro and generated RNA-guided DNA integration products from short synthetic DNA or a gene, with or without TIRs. However, DNA integration could still occur unguided due to the competing background activity of the casposase moiety. Expression of Casposase-dCas9 in Escherichia coli cells effectively targeted chromosomal and plasmid lacZ revealed by reduced β-galactosidase activity but DNA integration was not detected. The promiscuous substrate integration properties of casposases make them potential DNA insertion tools. The Casposase–dCas9 fusion protein may serves as a prototype for development in genetic editing for DNA insertion that is independent of homology-directed DNA repair.
Citation
Lau, C. H., & Bolt, E. L. (2021). Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9. Bioscience Reports, 41(1), Article BSR20203595. https://doi.org/10.1042/bsr20203595
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 14, 2020 |
Online Publication Date | Jan 5, 2021 |
Publication Date | Jan 29, 2021 |
Deposit Date | Jan 9, 2021 |
Publicly Available Date | Jan 13, 2021 |
Journal | Bioscience Reports |
Print ISSN | 0144-8463 |
Electronic ISSN | 1573-4935 |
Publisher | Portland Press |
Peer Reviewed | Peer Reviewed |
Volume | 41 |
Issue | 1 |
Article Number | BSR20203595 |
DOI | https://doi.org/10.1042/bsr20203595 |
Keywords | Biophysics; Cell Biology; Biochemistry; Molecular Biology |
Public URL | https://nottingham-repository.worktribe.com/output/5207196 |
Publisher URL | https://portlandpress.com/bioscirep/article/41/1/BSR20203595/227184/Integration-of-diverse-DNA-substrates-by-a |
Files
bsr-2020-3595
(1.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
POLD3 as Controller of Replicative DNA Repair
(2024)
Journal Article
Escherichia coli DNA repair helicase Lhr is also a uracil-DNA glycosylase
(2023)
Journal Article
Escherichia coli DNA repair helicase Lhr is also a uracil‐DNA glycosylase
(2023)
Journal Article
Cas1-Cas2 physically and functionally interacts with DnaK to modulate CRISPR Adaptation
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search