Dingfan Xing
Comparison of simple averaging and latent class modeling to estimate the area of land cover in the presence of reference data variability
Xing, Dingfan; Stehman, Stephen V.; Foody, Giles M.; Pengra, Bruce W.
Authors
Stephen V. Stehman
Professor GILES FOODY giles.foody@nottingham.ac.uk
PROFESSOR OF GEOGRAPHICAL INFORMATION
Bruce W. Pengra
Abstract
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. Estimates of the area or percent area of the land cover classes within a study region are often based on the reference land cover class labels assigned by analysts interpreting satellite imagery and other ancillary spatial data. Different analysts interpreting the same spatial unit will not always agree on the land cover class label that should be assigned. Two approaches for accommodating interpreter variability when estimating the area are simple averaging (SA) and latent class modeling (LCM). This study compares agreement between area estimates obtained from SA and LCM using reference data obtained by seven trained, professional interpreters who independently interpreted an annual time series of land cover reference class labels for 300 sampled Landsat pixels. We also compare the variability of the LCM and SA area estimates over different numbers of interpreters and different subsets of interpreters within each interpreter group size, and examine area estimates of three land cover classes (forest, developed, and wetland) and three change types (forest gain, forest loss, and developed gain). Differences between the area estimates obtained from SA and LCM are most pronounced for the estimates of wetland and the three change types. The percent area estimates of these rare classes were usually greater for LCM compared to SA, with the differences between LCM and SA increasing as the number of interpreters providing the reference data increased. The LCM area estimates generally had larger standard deviations and greater ranges over different subsets of interpreters, indicating greater sensitivity to the selection of the individual interpreters who carried out the reference class labeling.
Citation
Xing, D., Stehman, S. V., Foody, G. M., & Pengra, B. W. (2021). Comparison of simple averaging and latent class modeling to estimate the area of land cover in the presence of reference data variability. Land, 10(1), Article 35. https://doi.org/10.3390/land10010035
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 30, 2020 |
Online Publication Date | Jan 4, 2021 |
Publication Date | Jan 1, 2021 |
Deposit Date | Jan 5, 2021 |
Publicly Available Date | Jan 5, 2021 |
Journal | Land |
Electronic ISSN | 2073-445X |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 1 |
Article Number | 35 |
DOI | https://doi.org/10.3390/land10010035 |
Public URL | https://nottingham-repository.worktribe.com/output/5201023 |
Publisher URL | https://www.mdpi.com/2073-445X/10/1/35 |
Files
2021-Land
(3.9 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Spatial–Temporal Analysis of Greenness and Its Relationship with Poverty in China
(2024)
Journal Article
Under the mantra: 'Make use of colorblind friendly graphs'
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search