Skip to main content

Research Repository

Advanced Search

Comparison of simple averaging and latent class modeling to estimate the area of land cover in the presence of reference data variability

Xing, Dingfan; Stehman, Stephen V.; Foody, Giles M.; Pengra, Bruce W.

Comparison of simple averaging and latent class modeling to estimate the area of land cover in the presence of reference data variability Thumbnail


Authors

Dingfan Xing

Stephen V. Stehman

Bruce W. Pengra



Abstract

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. Estimates of the area or percent area of the land cover classes within a study region are often based on the reference land cover class labels assigned by analysts interpreting satellite imagery and other ancillary spatial data. Different analysts interpreting the same spatial unit will not always agree on the land cover class label that should be assigned. Two approaches for accommodating interpreter variability when estimating the area are simple averaging (SA) and latent class modeling (LCM). This study compares agreement between area estimates obtained from SA and LCM using reference data obtained by seven trained, professional interpreters who independently interpreted an annual time series of land cover reference class labels for 300 sampled Landsat pixels. We also compare the variability of the LCM and SA area estimates over different numbers of interpreters and different subsets of interpreters within each interpreter group size, and examine area estimates of three land cover classes (forest, developed, and wetland) and three change types (forest gain, forest loss, and developed gain). Differences between the area estimates obtained from SA and LCM are most pronounced for the estimates of wetland and the three change types. The percent area estimates of these rare classes were usually greater for LCM compared to SA, with the differences between LCM and SA increasing as the number of interpreters providing the reference data increased. The LCM area estimates generally had larger standard deviations and greater ranges over different subsets of interpreters, indicating greater sensitivity to the selection of the individual interpreters who carried out the reference class labeling.

Citation

Xing, D., Stehman, S. V., Foody, G. M., & Pengra, B. W. (2021). Comparison of simple averaging and latent class modeling to estimate the area of land cover in the presence of reference data variability. Land, 10(1), Article 35. https://doi.org/10.3390/land10010035

Journal Article Type Article
Acceptance Date Dec 30, 2020
Online Publication Date Jan 4, 2021
Publication Date Jan 1, 2021
Deposit Date Jan 5, 2021
Publicly Available Date Jan 5, 2021
Journal Land
Electronic ISSN 2073-445X
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 10
Issue 1
Article Number 35
DOI https://doi.org/10.3390/land10010035
Public URL https://nottingham-repository.worktribe.com/output/5201023
Publisher URL https://www.mdpi.com/2073-445X/10/1/35

Files





You might also like



Downloadable Citations