Ossama Al-Juboori
Sustainable Conversion of Carbon Dioxide into Diverse Hydrocarbon Fuels via Molten Salt Electrolysis
Al-Juboori, Ossama; Sher, Farooq; Rahman, Saba; Rasheed, Tahir; Chen, George Z.
Authors
Farooq Sher
Saba Rahman
Tahir Rasheed
Professor GEORGE CHEN GEORGE.CHEN@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTROCHEMICAL TECHNOLOGIES
Abstract
© 2020 American Chemical Society. In recent decades, the unlimited use of fossil fuels mostly for power generation has emitted a huge amount of carbon dioxide into the atmosphere which in return has led to global warming. Here we use green technology, the molten salt electrochemical system comprising titanium and mild steel as a cathode with a graphite anode, whereas molten carbonate (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 mol %), hydroxide (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol %), and chlorides (KCl-LiCl; 41-59 mol %) salts as electrolytes This study investigates the effect of temperature, feed gas ratio CO2/H2O, and use of different cathode materials on hydrocarbon product along with current efficiencies. Gas chromatography and mass spectroscopy have been applied to analyze the gas products. According to GC results, more specific results in terms of high molecular weight and long chain hydrocarbons were obtained using titanium cathodic material rather than mild steel. The results revealed that among all the electrolytes, molten carbonates at 1.5 V and 425 °C produced higher hydrocarbons as C7H16 while all other produced CH4. The optimum conditions for hydrocarbon formation and higher current efficiencies in the case of molten carbonates were found to be 500 °C under a molar ratio of CO2/H2O of 15.6. However, the current efficiencies do not change on increasing the temperature from 425 to 500 °C and is maintained at 99% under a molar ratio of CO2/H2O of 15.6. The total current efficiency of the entire cathodic product reduced clearly from 95 to 79% by increasing the temperature under a CO2/H2O ratio of 9.2 due to the reduction of hydrocarbon generation in this case, despite the formation of C7H16. Therefore, due to its fast electrolytic conversion rate and low cost (no use of catalyst) the practice of molten salts could be an encouraging and promising technology for future investigation for hydrocarbon fuel formation.
Citation
Al-Juboori, O., Sher, F., Rahman, S., Rasheed, T., & Chen, G. Z. (2020). Sustainable Conversion of Carbon Dioxide into Diverse Hydrocarbon Fuels via Molten Salt Electrolysis. ACS Sustainable Chemistry and Engineering, 8(51), 19178-19188. https://doi.org/10.1021/acssuschemeng.0c08209
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 26, 2020 |
Online Publication Date | Dec 11, 2020 |
Publication Date | Dec 28, 2020 |
Deposit Date | Dec 14, 2020 |
Publicly Available Date | Dec 12, 2021 |
Journal | ACS Sustainable Chemistry and Engineering |
Electronic ISSN | 2168-0485 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 8 |
Issue | 51 |
Pages | 19178-19188 |
DOI | https://doi.org/10.1021/acssuschemeng.0c08209 |
Keywords | Renewable energy, CO2 utilization, Electrochemical conversion, Molten salts electrolysis, Hydrocarbon fuels and CO2/H2O |
Public URL | https://nottingham-repository.worktribe.com/output/5147142 |
Publisher URL | https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08209 |
Additional Information | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering , copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acssuschemeng.0c08209. |
Files
Sustainable conversion of carbon dioxide into diverse hydrocarbon fuels via molten salt electrolysis
(716 Kb)
PDF
You might also like
Redox Materials for Electrochemical Capacitors
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search