Halar Memon
Durability enhancement of low ice adhesion polymeric coatings
Memon, Halar; De Focatiis, Davide S.A.; Choi, Kwing-So; Hou, Xianghui
Authors
Dr DAVIDE DE FOCATIIS DAVIDE.DEFOCATIIS@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Professor KWING-SO CHOI kwing-so.choi@nottingham.ac.uk
PROFESSOR OF FLUID MECHANICS
Xianghui Hou
Abstract
Icephobic performance of low-ice adhesion polymeric coatings has been studied intensively for passive ice protection. However, limited efforts were conducted to identify strategies for enhancing the durability of the coatings to maintain low ice adhesion after erosion impact. In this work, we developed and investigated several polyurethane-based nanocomposite and fibre-reinforced coatings to understand the deteriorating behaviour of the coatings under rigorous impinging erosion tests and the subsequent impact on ice adhesion. The inclusion of fillers resulted in up to 38 points increase in Shore hardness relative to the pristine PU coatings. The ice adhesion strengths on 3 wt% nanoparticle-reinforced coatings after the erosion tests were nearly halved, whereas, a 5-fold reduction was observed on 3 wt% fibre-reinforced coatings compared to that of the pure PU coatings. Our results indicated that the incorporation of fillers was effective in reducing the ice anchoring points, and that, after the impingement, the icephobic performance was retained by either lowering surface roughness or by minimizing surface deterioration. Fibres took a more effective role in limiting crack initiation and resisting crack propagation. The ice adhesion strength of the coatings increased from 5.6 kPa to 8.4 kPa with 20 wt% carbon fibres incorporated PU coatings, essentially keeping the adhesion below 10 kPa even after rigorous impinging tests and a ∼10-fold reduction in ice adhesion strength as compared to the pure PU coatings. The incorporation of the fibres led to enhanced durability and retention of excellent icephobic performance via a mechanism that is adaptable to other polymeric coatings.
Citation
Memon, H., De Focatiis, D. S., Choi, K.-S., & Hou, X. (2021). Durability enhancement of low ice adhesion polymeric coatings. Progress in Organic Coatings, 151, Article 106033. https://doi.org/10.1016/j.porgcoat.2020.106033
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 4, 2020 |
Online Publication Date | Dec 7, 2020 |
Publication Date | 2021-02 |
Deposit Date | Dec 8, 2020 |
Publicly Available Date | Dec 8, 2021 |
Journal | Progress in Organic Coatings |
Print ISSN | 0300-9440 |
Electronic ISSN | 0300-9440 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 151 |
Article Number | 106033 |
DOI | https://doi.org/10.1016/j.porgcoat.2020.106033 |
Keywords | Organic Chemistry; Materials Chemistry; General Chemical Engineering; Surfaces, Coatings and Films |
Public URL | https://nottingham-repository.worktribe.com/output/5128742 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0300944020312443?via%3Dihub |
Additional Information | This article is maintained by: Elsevier; Article Title: Durability enhancement of low ice adhesion polymeric coatings; Journal Title: Progress in Organic Coatings; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.porgcoat.2020.106033; Content Type: article; Copyright: © 2020 Elsevier B.V. All rights reserved. |
Files
Manuscript - POC
(1.3 Mb)
PDF
You might also like
Dynamic behavior of polymers
(2024)
Book Chapter
Development of Deproteinized Natural Rubber Latex Foam for Seat Cushions
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search