Vivek Agarwal
Monitoring of Ground Movement and Groundwater Changes in London Using InSAR and GRACE
Agarwal, Vivek; Kumar, Amit; L. Gomes, Rachel; Marsh, Stuart
Authors
Amit Kumar
Professor Rachel Gomes rachel.gomes@nottingham.ac.uk
PROFESSOR OF WATER & RESOURCE PROCESSING
Professor STUART MARSH STUART.MARSH@NOTTINGHAM.AC.UK
PROFESSOR OF GEOSPATIAL ENGINEERING
Abstract
Groundwater-induced land movement can cause damage to property and resources, thus its monitoring is very important for the safety and economics of a city. London is a heavily built-up urban area and relies largely on its groundwater resource and thus poses the threat of land subsidence. Interferometric Synthetic Aperture Radar (InSAR) can facilitate monitoring of land movement and Gravity Recovery and Climate Experiment (GRACE) gravity anomalies can facilitate groundwater monitoring. For London, no previous study has investigated groundwater variations and related land movement using InSAR and GRACE together. In this paper, we used ENVISAT ASAR C-band SAR images to obtain land movement using Persistent Scatterer InSAR (PSInSAR) technique and GRACE gravity anomalies to obtain groundwater variations between December 2002 and December 2010 for central London. Both experiments showed long-term, decreasing, complex, non-linear patterns in the spatial and temporal domain. The land movement values varied from −6 to +6 mm/year, and their reliability was validated with observed Global Navigation Satellite System (GNSS) data, by conducting a two-sample t-test. The average groundwater loss estimated from GRACE was found to be 9.003 MCM/year. The ground movement was compared to observed groundwater values obtained from various boreholes around central London. It was observed that when large volumes of groundwater is extracted then it leads to land subsidence, and when groundwater is recharged then surface uplift is witnessed. The results demonstrate that InSAR and GRACE complement each other and can be an excellent source of monitoring groundwater for hydrologists.
Citation
Agarwal, V., Kumar, A., L. Gomes, R., & Marsh, S. (2020). Monitoring of Ground Movement and Groundwater Changes in London Using InSAR and GRACE. Applied Sciences, 10(23), 1-21. https://doi.org/10.3390/app10238599
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 28, 2020 |
Online Publication Date | Dec 1, 2020 |
Publication Date | Dec 1, 2020 |
Deposit Date | Dec 7, 2020 |
Publicly Available Date | Dec 7, 2020 |
Journal | Applied Sciences (Switzerland) |
Electronic ISSN | 2076-3417 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 23 |
Article Number | 8599 |
Pages | 1-21 |
DOI | https://doi.org/10.3390/app10238599 |
Public URL | https://nottingham-repository.worktribe.com/output/5120087 |
Publisher URL | https://www.mdpi.com/2076-3417/10/23/8599 |
Files
Monitoring of Ground Movement and Groundwater Changes in London Using InSAR and GRACE
(16.9 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search