Dr MING LI MING.LI@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
A CO2‐Tolerant Perovskite Oxide with High Oxide Ion and Electronic Conductivity
Li, Ming; Niu, Hongjun; Druce, John; T�llez, Helena; Ishihara, Tatsumi; Kilner, John A.; Gasparyan, Hripsime; Pitcher, Michael J.; Xu, Wen; Shin, J. Felix; Daniels, Luke M.; Jones, Leanne A. H.; Dhanak, Vin R.; Hu, Dingyue; Zanella, Marco; Claridge, John B.; Rosseinsky, Matthew J.
Authors
Hongjun Niu
John Druce
Helena T�llez
Tatsumi Ishihara
John A. Kilner
Hripsime Gasparyan
Michael J. Pitcher
Wen Xu
J. Felix Shin
Luke M. Daniels
Leanne A. H. Jones
Vin R. Dhanak
Dingyue Hu
Marco Zanella
John B. Claridge
Matthew J. Rosseinsky
Abstract
Mixed ionic–electronic conductors (MIECs) that display high oxide ion conductivity (σo) and electronic conductivity (σe) constitute an important family of electrocatalysts for a variety of applications including fuel cells and oxygen separation membranes. Often MIECs exhibit sufficient σe but inadequate σo. It has been a long‐standing challenge to develop MIECs with both high σo and stability under device operation conditions. For example, the well‐known perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) exhibits exceptional σo and electrocatalytic activity. The reactivity of BSCF with CO2, however, limits its use in practical applications. Here, the perovskite oxide Bi0.15Sr0.85Co0.8Fe0.2O3−δ (BiSCF) is shown to exhibit not only exceptional bulk transport properties, with a σo among the highest for known MIECs, but also high CO2 tolerance. When used as an oxygen separation membrane, BiSCF displays high oxygen permeability comparable to that of BSCF and much higher stability under CO2. The combination of high oxide transport properties and CO2 tolerance in a single‐phase MIEC gives BiSCF a significant advantage over existing MIECs for practical applications.
Citation
Li, M., Niu, H., Druce, J., Téllez, H., Ishihara, T., Kilner, J. A., Gasparyan, H., Pitcher, M. J., Xu, W., Shin, J. F., Daniels, L. M., Jones, L. A. H., Dhanak, V. R., Hu, D., Zanella, M., Claridge, J. B., & Rosseinsky, M. J. (2020). A CO2‐Tolerant Perovskite Oxide with High Oxide Ion and Electronic Conductivity. Advanced Materials, 32(4), Article 1905200. https://doi.org/10.1002/adma.201905200
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 23, 2019 |
Online Publication Date | Dec 1, 2019 |
Publication Date | Jan 28, 2020 |
Deposit Date | Nov 18, 2020 |
Publicly Available Date | Nov 18, 2020 |
Journal | Advanced Materials |
Print ISSN | 0935-9648 |
Electronic ISSN | 1521-4095 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 32 |
Issue | 4 |
Article Number | 1905200 |
DOI | https://doi.org/10.1002/adma.201905200 |
Keywords | Mechanical Engineering; General Materials Science; Mechanics of Materials |
Public URL | https://nottingham-repository.worktribe.com/output/5051664 |
Publisher URL | https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201905200 |
Files
A CO2 Tolerant Perovskite Oxide With High Oxide Ion And Electronic Conductivity
(1.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Supramolecular Proton Conductors Self-Assembled by Organic Cages
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search