Connor Fields
Timing the escape of a photoexcited electron from a molecular cage
Fields, Connor; Foerster, Aleksandra; Ghaderzadeh, Sadegh; Popov, Ilya; Huynh, Bang; Junqueira, Filipe; James, Tyler; Alonso Perez, Sofia; Duncan, David A.; Lee, Tien-Lin; Wang, Yitao; Bloodworth, Sally; Hoffman, Gabriela; Walkey, Mark; Whitby, Richard J.; Levitt, Malcolm H.; Kiraly, Brian; O’Shea, James N.; Besley, Elena; Moriarty, Philip
Authors
Aleksandra Foerster
Sadegh Ghaderzadeh
Ilya Popov
Bang Huynh
Mr FILIPE LOULY QUINAN JUNQUEIRA Filipe.Junqueira@nottingham.ac.uk
RESEARCH ASSOCIATE
Mr TYLER JAMES Tyler.James1@nottingham.ac.uk
RESEARCH FELLOW
Sofia Alonso Perez
Dr David Duncan David.Duncan@nottingham.ac.uk
ASSOCIATE PROFESSOR
Tien-Lin Lee
Yitao Wang
Sally Bloodworth
Gabriela Hoffman
Mark Walkey
Richard J. Whitby
Malcolm H. Levitt
Dr BRIAN KIRALY Brian.Kiraly@nottingham.ac.uk
ASSISTANT PROFESSOR
Dr JAMES O'SHEA J.OSHEA@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR AND READER IN PHYSICS
Professor ELENA BESLEY ELENA.BESLEY@NOTTINGHAM.AC.UK
PROFESSOR OF THEORETICAL COMPUTATIONAL CHEMISTRY
Professor Philip Moriarty PHILIP.MORIARTY@NOTTINGHAM.AC.UK
PROFESSOR OF PHYSICS
Abstract
Charge transfer is fundamentally dependent on the overlap of the orbitals comprising the transport pathway. This has key implications for molecular, nanoscale, and quantum technologies, for which delocalization (and decoherence) rates are essential figures of merit. Here, we apply the core hole clock technique—an energy-domain variant of ultrafast spectroscopy—to probe the delocalization of a photoexcited electron inside a closed molecular cage, namely the Ar 2p54s1 state of Ar@C60. Despite marginal frontier orbital mixing in the ground configuration, almost 80% of the excited state density is found outside the buckyball due to the formation of a markedly diffuse hybrid orbital. Far from isolating the intracage excitation, the surrounding fullerene is instead a remarkably efficient conduit for electron transfer: we measure characteristic delocalization times of 6.6 ± 0.3 fs and ≲ 500 attoseconds, respectively, for a 3D Ar@C60 film and a 2D monolayer on Ag(111).
Citation
Fields, C., Foerster, A., Ghaderzadeh, S., Popov, I., Huynh, B., Junqueira, F., James, T., Alonso Perez, S., Duncan, D. A., Lee, T.-L., Wang, Y., Bloodworth, S., Hoffman, G., Walkey, M., Whitby, R. J., Levitt, M. H., Kiraly, B., O’Shea, J. N., Besley, E., & Moriarty, P. (2025). Timing the escape of a photoexcited electron from a molecular cage. Nature Communications, 16, Article 5062. https://doi.org/10.1038/s41467-025-60260-z
Journal Article Type | Article |
---|---|
Acceptance Date | May 16, 2025 |
Online Publication Date | May 31, 2025 |
Publication Date | May 31, 2025 |
Deposit Date | Jul 22, 2025 |
Publicly Available Date | Jul 23, 2025 |
Journal | Nature Communications |
Electronic ISSN | 2041-1723 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Article Number | 5062 |
DOI | https://doi.org/10.1038/s41467-025-60260-z |
Public URL | https://nottingham-repository.worktribe.com/output/49831421 |
Publisher URL | https://www.nature.com/articles/s41467-025-60260-z |
Files
S41467-025-60260-z
(3.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Strain-modulated defect engineering of two-dimensional materials
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search