Martin Zoltner
Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes
Zoltner, Martin; Campagnaro, Gustavo D.; Taleva, Gergana; Burrell, Alana; Cerone, Michela; Leung, Ka Fai; Achcar, Fiona; Horn, David; Vaughan, Sue; Gadelha, Catarina; Z�kov�, Alena; Barrett, Michael P.; de Koning, Harry P.; Field, Mark C.
Authors
Gustavo D. Campagnaro
Gergana Taleva
Alana Burrell
Michela Cerone
Ka Fai Leung
Fiona Achcar
David Horn
Sue Vaughan
Dr CATARINA GADELHA Catarina.Gadelha@nottingham.ac.uk
ASSOCIATE PROFESSOR
Alena Z�kov�
Michael P. Barrett
Harry P. de Koning
Mark C. Field
Abstract
© 2020 Zoltner et al. Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Citation
Zoltner, M., Campagnaro, G. D., Taleva, G., Burrell, A., Cerone, M., Leung, K. F., Achcar, F., Horn, D., Vaughan, S., Gadelha, C., Zíková, A., Barrett, M. P., de Koning, H. P., & Field, M. C. (2020). Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. Journal of Biological Chemistry, 295(24), 8331-8347. https://doi.org/10.1074/jbc.ra120.012355
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 22, 2020 |
Online Publication Date | Apr 30, 2020 |
Publication Date | Jun 12, 2020 |
Deposit Date | Jul 24, 2020 |
Publicly Available Date | Jul 28, 2020 |
Journal | Journal of Biological Chemistry |
Print ISSN | 0021-9258 |
Electronic ISSN | 1083-351X |
Publisher | American Society for Biochemistry and Molecular Biology |
Peer Reviewed | Peer Reviewed |
Volume | 295 |
Issue | 24 |
Pages | 8331-8347 |
DOI | https://doi.org/10.1074/jbc.ra120.012355 |
Keywords | Cell Biology; Biochemistry; Molecular Biology |
Public URL | https://nottingham-repository.worktribe.com/output/4748093 |
Publisher URL | https://www.jbc.org/content/295/24/8331 |
Files
Suramin exposure alters cellular metabolism
(4.1 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
A transferrin receptor’s guide to African trypanosomes
(2023)
Journal Article