Skip to main content

Research Repository

Advanced Search

Holistic structural understanding of epitaxially-grown Bi/Au(111) moiré superstructures

Vezzoni Vicente, Pablo; Weiss, Tobias; Meier, Dennis; Zhao, Wenchao; Tömekçe, Birce Sena; G. Cuxart, Marc; Klein, Benedikt P.; Duncan, David A.; Lee, Tien-Lin; Papageorgiou, Anthoula C.; Muntwiler, Matthias; Seitsonen, Ari Paavo; Auwärter, Willi; Feulner, Peter; Barth, Johannes V.; Allegretti, Francesco

Authors

Pablo Vezzoni Vicente

Tobias Weiss

Dennis Meier

Wenchao Zhao

Birce Sena Tömekçe

Marc G. Cuxart

Benedikt P. Klein

Tien-Lin Lee

Anthoula C. Papageorgiou

Matthias Muntwiler

Ari Paavo Seitsonen

Willi Auwärter

Peter Feulner

Johannes V. Barth

Francesco Allegretti



Abstract

In light of the recent research interest in low-dimensional bismuth structures as spin-active materials and topological insulators, we present a comprehensive characterization of the Bi/Au⁡(111) interface. The nuanced evolution of Bi phases upon deposition in ultrahigh vacuum (UHV) on a Au⁡(111) surface is investigated from semidisordered clusters to few-layer Bi⁡(110) thin films. Particular attention is devoted to the high-coverage, submonolayer phases, commonly grouped under the (𝑃×√3) nomenclature. We bring forth a new model, refining the current understanding of the Bi/Au⁡(111) interface and demonstrating the existence of submonolayer moiré superstructures, whose geometry and superperiodicity depend on their coverage. This tuneable periodicity paves the way for their use as tailored buffer and templating layers for epitaxial growth of thin films on Au⁡(111). Finally, we clarify the growth mode of multilayer Bi⁡(110) as bilayer-by-bilayer, allowing precise thickness control of anisotropically strained thin films. This holistic understanding of the structural properties of the material was enabled by the synergy of several experimental techniques, namely low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy and spectroscopy (STM, STS), and x-ray standing waves (XSW), further corroborated by density functional theory (DFT) simulations.

Citation

Vezzoni Vicente, P., Weiss, T., Meier, D., Zhao, W., Tömekçe, B. S., G. Cuxart, M., Klein, B. P., Duncan, D. A., Lee, T.-L., Papageorgiou, A. C., Muntwiler, M., Seitsonen, A. P., Auwärter, W., Feulner, P., Barth, J. V., & Allegretti, F. (2024). Holistic structural understanding of epitaxially-grown Bi/Au(111) moiré superstructures. Physical Review Materials, 8(10), Article 104001. https://doi.org/10.1103/physrevmaterials.8.104001

Journal Article Type Article
Acceptance Date Sep 4, 2024
Online Publication Date Oct 1, 2024
Publication Date Oct 1, 2024
Deposit Date Nov 18, 2024
Journal Physical Review Materials
Electronic ISSN 2475-9953
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume 8
Issue 10
Article Number 104001
DOI https://doi.org/10.1103/physrevmaterials.8.104001
Keywords Adsorption; Chemical bonding; Density functional theory; Growth; Nucleation on surfaces; Structural properties; Surface & interfacial phenomena; Bilayer films; Clusters; Monolayer films; Solid-solid interfaces; Surfaces; Vacuum interfaces; Low-energy elec
Public URL https://nottingham-repository.worktribe.com/output/41932258
Publisher URL https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.8.104001