Skip to main content

Research Repository

Advanced Search

Functional law of large numbers for an epidemic model with random effects

Izyumtseva, Olga; KhudaBukhsh, Wasiur R.; Rempała, Grzegorz A.

Authors

Olga Izyumtseva

Grzegorz A. Rempała



Contributors

Arni S.R. Srinivasa Rao
Editor

Donald E.K. Martin
Editor

C.R. Rao
Editor

Abstract

We consider the standard compartmental Susceptible-Infected-Recovered (SIR) model of infectious disease epidemiology with a random effect on the susceptibility of the individuals. We use a Continuous Time Markov Chain (CTMC) to model the dynamics of the population counts. We show that the scaled number of individuals in each compartment converges to a deterministic limit satisfying a system of Ordinary Differential Equations (ODEs), conditional on the random effect. Using the stochastic averaging principle for martingale problems, we derive a Functional Law of Large Numbers (FLLN) for the scaled process averaging out the random effect.

Citation

Izyumtseva, O., KhudaBukhsh, W. R., & Rempała, G. A. (2024). Functional law of large numbers for an epidemic model with random effects. In A. S. Srinivasa Rao, D. E. Martin, & C. Rao (Eds.), Modeling and Analysis of Longitudinal Data. Elsevier. https://doi.org/10.1016/bs.host.2024.07.002

Online Publication Date Sep 5, 2024
Publication Date Feb 11, 2024
Deposit Date Sep 12, 2024
Publisher Elsevier
Peer Reviewed Peer Reviewed
Series Title Handbook of Statistics
Series Number 50
Book Title Modeling and Analysis of Longitudinal Data
ISBN 9780443136511
DOI https://doi.org/10.1016/bs.host.2024.07.002
Public URL https://nottingham-repository.worktribe.com/output/39461093
Publisher URL https://www.sciencedirect.com/science/article/abs/pii/S0169716124000294?via%3Dihub