T. D. Turner
Flow-Xl: a new facility for the analysis of crystallization in flow systems
Turner, T. D.; O'Shaughnessy, C.; He, X.; Levenstein, M. A.; Hunter, L.; Wojciechowski, J.; Bristowe, H.; Stone, R.; Wilson, C. C.; Florence, A.; Robertson, K.; Kapur, N.; Meldrum, F. C.
Authors
C. O'Shaughnessy
X. He
M. A. Levenstein
L. Hunter
J. Wojciechowski
H. Bristowe
R. Stone
C. C. Wilson
A. Florence
Dr KAREN ROBERTSON KAREN.ROBERTSON@NOTTINGHAM.AC.UK
ASSISTANT PROFESSOR
N. Kapur
F. C. Meldrum
Abstract
Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.
Citation
Turner, T. D., O'Shaughnessy, C., He, X., Levenstein, M. A., Hunter, L., Wojciechowski, J., Bristowe, H., Stone, R., Wilson, C. C., Florence, A., Robertson, K., Kapur, N., & Meldrum, F. C. (2024). Flow-Xl: a new facility for the analysis of crystallization in flow systems. Journal of Applied Crystallography, 57(5), 1299-1310. https://doi.org/10.1107/s1600576724006113
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 23, 2024 |
Online Publication Date | Aug 19, 2024 |
Publication Date | Oct 1, 2024 |
Deposit Date | Feb 20, 2025 |
Publicly Available Date | Feb 21, 2025 |
Journal | Journal of Applied Crystallography |
Print ISSN | 0021-8898 |
Electronic ISSN | 1600-5767 |
Publisher | International Union of Crystallography |
Peer Reviewed | Peer Reviewed |
Volume | 57 |
Issue | 5 |
Pages | 1299-1310 |
DOI | https://doi.org/10.1107/s1600576724006113 |
Public URL | https://nottingham-repository.worktribe.com/output/38649766 |
Publisher URL | https://journals.iucr.org/j/issues/2024/05/00/iu5051/index.html |
Files
Flow-Xl: a new facility for the analysis of crystallization in flow systems
(21.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
PDI-functionalised glass beads: efficient, metal-free heterogeneous photocatalysts suitable for flow photochemistry
(2023)
Preprint / Working Paper
Quid Pro Flow
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search