Skip to main content

Research Repository

Advanced Search

Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum

Burson, Amanda; Stomp, Maayke; Mekkes, Lisette; Huisman, Jef

Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum Thumbnail


Authors

Amanda Burson

Maayke Stomp

Lisette Mekkes

Jef Huisman



Abstract

Niche‐based theories and the neutral theory of biodiversity differ in their predictions of how the species composition of natural communities will respond to changes in nutrient availability. This is an issue of major environmental relevance, as many ecosystems have experienced changes in nitrogen (N) and phosphorus (P) due to anthropogenic manipulation of nutrient loading. To understand how changes in N and P limitation may impact community structure, we conducted laboratory competition experiments using a multispecies phytoplankton community sampled from the North Sea. Results showed that picocyanobacteria (Cyanobium sp.) won the competition under N limitation, while picocyanobacteria and nonmotile nanophytoplankton (Nannochloropsis sp.) coexisted at equal abundances under P limitation. Additional experiments using isolated monocultures confirmed that Cyanobium sp. depleted N to lower levels than Nannochloropsis sp., but that both species had nearly identical P requirements, suggesting a potential for neutral coexistence under P‐limited conditions. Pairwise competition experiments with the two isolates seemed to support the consistency of these results, but P limitation resulted in stable species coexistence irrespective of the initial conditions rather than the random drift of species abundances predicted by neutral theory. Comparison of the light absorption spectra indicates that coexistence of the two species was stabilized through differential use of the underwater light spectrum. Our results provide an interesting experimental example of modern coexistence theory, where species were equal competitors in one niche dimension but their competitive traits differed in other niche dimensions, thus enabling stable species coexistence on a single limiting nutrient through niche differentiation in the light spectrum.

Citation

Burson, A., Stomp, M., Mekkes, L., & Huisman, J. (2019). Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum. Ecology, 100(12), Article e02873. https://doi.org/10.1002/ecy.2873

Journal Article Type Article
Acceptance Date Jul 15, 2019
Online Publication Date Sep 19, 2019
Publication Date 2019-12
Deposit Date Jan 30, 2020
Publicly Available Date Jan 30, 2020
Journal Ecology
Print ISSN 0012-9658
Electronic ISSN 1939-9170
Publisher Ecological Society of America
Peer Reviewed Peer Reviewed
Volume 100
Issue 12
Article Number e02873
DOI https://doi.org/10.1002/ecy.2873
Keywords Neutral theory of biodiversity; Nitrogen; phosphorus; Phytoplankton; Resource competition; Species coexistence
Public URL https://nottingham-repository.worktribe.com/output/3829488
Publisher URL https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.2873
Additional Information Received: 2019-04-09; Accepted: 2019-07-15; Published: 2019-09-19

Files





Downloadable Citations