Skip to main content

Research Repository

Advanced Search

Multiphase Computational Fluid Dynamics Modeling of External Oil Flow From a Journal Bearing

Berthold, Martin; Morvan, Herv�; Jefferson-Loveday, Richard; Young, Colin; Rothwell, Benjamin C; Ambrose, Stephen

Authors

Martin Berthold

Herv� Morvan

Richard Jefferson-Loveday

Colin Young



Abstract

High loads and bearing life requirements make journal bearings a potential choice for use in high power, epicyclic gearboxes in jet engines. Particularly, in a planetary configuration , the kinematic conditions are complex. With the planet gears rotating about their own axes and orbiting around the sun gear, centrifugal forces generated by both motions interact with each other and affect the external flow behavior of the oil exiting the journal bearing. Computational fluid dynamics (CFD) simulations using the volume of fluid (VoF) method are carried out in ANSYS FLUENT (ANSYS, 2013, "ANSYS Fluent User's Guide," ANSYS Inc., Canonsburg, PA) to numerically model the two-phase flow behavior of the oil exiting the bearing and merging into the air surrounding the bearing. This paper presents an investigation of two numerical schemes that are available in ANSYS FLUENT to track or capture the air-oil phase interface: the geometric reconstruction scheme and the compressive scheme. Both numerical schemes are used to model the oil outflow behavior in the most simplistic approximation of a journal bearing: a representation, rotating about its own axis, with a circumferentially constant, i.e., concentric, lubricating gap. Based on these simplifications, a three-dimensional (3D) CFD sector model with rotationally periodic boundaries is considered. A comparison of the geometric reconstruction scheme and the compressive scheme is presented with regard to the accuracy of the phase interface reconstruction and the time required to reach steady-state flow-field conditions. The CFD predictions are validated against existing literature data with respect to the flow regime, the direction of the predicted oil flow path, and the oil film thickness. Based on the findings and considerations of industrial requirements, a recommendation is made for the most suitable scheme to be used. With a robust and partially validated CFD model in place, the model fidelity can be enhanced to include journal bearing eccentricity. Due to the convergent-divergent gap and the resultant pressure field within the lubricating oil film, the outflow behavior can be expected to be very different compared to that of a concentric journal bearing. Naturally, the inlet boundary conditions for the oil emerging from the journal bearing into the external environment must be consistent with the outlet conditions from the bearing. The second part of this paper therefore focuses on providing a method to generate appropriate inlet boundary conditions for external oil flow from an eccentric journal bearing.

Citation

Berthold, M., Morvan, H., Jefferson-Loveday, R., Young, C., Rothwell, B. C., & Ambrose, S. (2019). Multiphase Computational Fluid Dynamics Modeling of External Oil Flow From a Journal Bearing. Journal of Engineering for Gas Turbines and Power, 141(5), 1-12. https://doi.org/10.1115/1.4041517

Journal Article Type Article
Acceptance Date Aug 1, 2018
Online Publication Date Nov 20, 2018
Publication Date May 1, 2019
Deposit Date Oct 25, 2019
Journal Journal of Engineering for Gas Turbines and Power
Print ISSN 0742-4795
Electronic ISSN 1528-8919
Publisher American Society of Mechanical Engineers
Peer Reviewed Peer Reviewed
Volume 141
Issue 5
Article Number 051002
Pages 1-12
DOI https://doi.org/10.1115/1.4041517
Keywords Fuel Technology; Mechanical Engineering; Energy Engineering and Power Technology; Nuclear Energy and Engineering; Aerospace Engineering
Public URL https://nottingham-repository.worktribe.com/output/2962539
Publisher URL https://asmedigitalcollection.asme.org/gasturbinespower/article/141/5/051002/368400/Multiphase-Computational-Fluid-Dynamics-Modeling