Skip to main content

Research Repository

Advanced Search

Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

Pos, Edwin; de Souza Coelho, Luiz; de Andrade Lima Filho, Diogenes; Salomão, Rafael P.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; Castilho, Carolina V.; Phillips, Oliver L.; Guevara, Juan Ernesto; de Jesus Veiga Carim, Marcelo; López, Dairon Cárdenas; Magnusson, William E.; Wittmann, Florian; Irume, Mariana Victória; Martins, Maria Pires; Sabatier, Daniel; da Silva Guimarães, José Renan; Molino, Jean François; Bánki, Olaf S.; Piedade, Maria Teresa Fernandez; Pitman, Nigel C. A.; Mendoza, Abel Monteagudo; Ramos, José Ferreira; Hawes, Joseph E.; Almeida, Everton José; Barbosa, Luciane Ferreira; Cavalheiro, Larissa; dos Santos, Márcia Cléia Vilela; Luize, Bruno Garcia; de Leão Novo, Evlyn Márcia Moraes; Vargas, Percy Núñez; Silva, Thiago Sanna Freire; Venticinque, Eduardo Martins; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Coronado, Euridice N. Honorio; Montero, Juan Carlos; Marimon, Beatriz S.; Marimon-Junior, Ben Hur; Fel...

Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology Thumbnail


Authors

Edwin Pos

Luiz de Souza Coelho

Diogenes de Andrade Lima Filho

Rafael P. Salomão

Iêda Leão Amaral

Francisca Dionízia de Almeida Matos

Carolina V. Castilho

Oliver L. Phillips

Juan Ernesto Guevara

Marcelo de Jesus Veiga Carim

Dairon Cárdenas López

William E. Magnusson

Florian Wittmann

Mariana Victória Irume

Maria Pires Martins

Daniel Sabatier

José Renan da Silva Guimarães

Jean François Molino

Olaf S. Bánki

Maria Teresa Fernandez Piedade

Nigel C. A. Pitman

Abel Monteagudo Mendoza

José Ferreira Ramos

Joseph E. Hawes

Everton José Almeida

Luciane Ferreira Barbosa

Larissa Cavalheiro

Márcia Cléia Vilela dos Santos

Bruno Garcia Luize

Evlyn Márcia Moraes de Leão Novo

Percy Núñez Vargas

Thiago Sanna Freire Silva

Eduardo Martins Venticinque

Angelo Gilberto Manzatto

Neidiane Farias Costa Reis

John Terborgh

Katia Regina Casula

Euridice N. Honorio Coronado

Juan Carlos Montero

Beatriz S. Marimon

Ben Hur Marimon-Junior

Ted R. Feldpausch

Alvaro Duque

Chris Baraloto

Nicolás Castaño Arboleda

Julien Engel

Pascal Petronelli

Charles Eugene Zartman

Timothy J. Killeen

Rodolfo Vasquez

Bonifacio Mostacedo

Rafael L. Assis

Jochen Schöngart

Hernán Castellanos

Marcelo Brilhante de Medeiros

Marcelo Fragomeni Simon

Ana Andrade

José Luís Camargo

Layon O. Demarchi

William F. Laurance

Susan G. W. Laurance

Emanuelle de Sousa Farias

Maria Aparecida Lopes

José Leonardo Lima Magalhães

Henrique Eduardo Mendonça Nascimento

Helder Lima de Queiroz

Gerardo A. C. Aymard

Roel Brienen

Juan David Cardenas Revilla

Flávia R. C. Costa

Adriano Quaresma

Ima Célia Guimarães Vieira

Bruno Barçante Ladvocat Cintra

Pablo R. Stevenson

Yuri Oliveira Feitosa

Joost F. Duivenvoorden

Hugo F. Mogollón

Leandro Valle Ferreira

James A. Comiskey

Freddie Draper

José Julio de Toledo

Gabriel Damasco

Nállarett Dávila

Roosevelt García-Villacorta

Aline Lopes

Alberto Vicentini

Janaína Costa Noronha

Flávia Rodrigues Barbosa

Rainiellen de Sá Carpanedo

Thaise Emilio

Carolina Levis

Domingos de Jesus Rodrigues

Juliana Schietti

Priscila Souza

Alfonso Alonso

Francisco Dallmeier

Vitor H. F. Gomes

Jon Lloyd

David Neill

Daniel Praia Portela de Aguiar

Alejandro Araujo-Murakami

Luzmila Arroyo

Fernanda Antunes Carvalho

Fernanda Coelho de Souza

Dário Dantas do Amaral

Kenneth J. Feeley

Rogerio Gribel

Marcelo Petratti Pansonato

Jos Barlow

Erika Berenguer

Joice Ferreira

Paul V. A. Fine

Marcelino Carneiro Guedes

Eliana M. Jimenez

Juan Carlos Licona

Maria Cristina Peñuela Mora

Carlos A. Peres

Boris Eduardo Villa Zegarra

Carlos Cerón

Terry W. Henkel

Paul Maas

Marcos Silveira

Juliana Stropp

Raquel Thomas-Caesar

Tim R. Baker

Doug Daly

Kyle G. Dexter

John Ethan Householder

Isau Huamantupa-Chuquimaco

Toby Pennington

Marcos Ríos Paredes

Alfredo Fuentes

José Luis Marcelo Pena

Miles R. Silman

J. Sebastián Tello

Jerome Chave

Fernando Cornejo Valverde

Anthony Di Fiore

Renato Richard Hilário

Juan Fernando Phillips

Gonzalo Rivas-Torres

Tinde R. van Andel

Patricio von Hildebrand

Edelcilio Marques Barbosa

Luiz Carlos de Matos Bonates

Hilda Paulette Dávila Doza

Émile Fonty

Ricardo Zárate Gómez

Therany Gonzales

George Pepe Gallardo Gonzales

Jean-Louis Guillaumet

Bruce Hoffman

André Braga Junqueira

Yadvinder Malhi

Ires Paula de Andrade Miranda

Linder Felipe Mozombite Pinto

Adriana Prieto

Agustín Rudas

Ademir R. Ruschel

Natalino Silva

César I. A. Vela

Vincent Antoine Vos

Egleé L. Zent

Stanford Zent

Bianca Weiss Albuquerque

Angela Cano

Diego F. Correa

Janaina Barbosa Pedrosa Costa

Bernardo Monteiro Flores

Milena Holmgren

Marcelo Trindade Nascimento

Alexandre A. Oliveira

Hirma Ramirez-Angulo

Maira Rocha

Veridiana Vizoni Scudeller

Rodrigo Sierra

Milton Tirado

Maria Natalia Umaña

Emilio Vilanova Torre

Corine Vriesendorp

Ophelia Wang

Kenneth R. Young

Manuel Augusto Ahuite Reategui

Cláudia Baider

Henrik Balslev

Sasha Cárdenas

Luisa Fernanda Casas

William Farfan-Rios

Cid Ferreira

Reynaldo Linares-Palomino

Casimiro Mendoza

Italo Mesones

Armando Torres-Lezama

Ligia Estela Urrego Giraldo

Daniel Villarroel

Roderick Zagt

Miguel N. Alexiades

Karina Garcia-Cabrera

Lionel Hernandez

William Milliken

Walter Palacios Cuenca

Susamar Pansini

Daniela Pauletto

Freddy Ramirez Arevalo

Adeilza Felipe Sampaio

Elvis H. Valderrama Sandoval

Luis Valenzuela Gamarra

Gerhard Boenisch

Jens Kattge

Nathan Kraft

Aurora Levesley

Karina Melgaço

Georgia Pickavance

Lourens Poorter

Hans ter Steege



Abstract

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.

Citation

Pos, E., de Souza Coelho, L., de Andrade Lima Filho, D., Salomão, R. P., Amaral, I. L., de Almeida Matos, F. D., …ter Steege, H. (2023). Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology. Scientific Reports, 13, Article 2859. https://doi.org/10.1038/s41598-023-28132-y

Journal Article Type Article
Acceptance Date Jan 13, 2023
Online Publication Date Feb 17, 2023
Publication Date Feb 17, 2023
Deposit Date Mar 7, 2023
Publicly Available Date Mar 9, 2023
Journal Scientific Reports
Electronic ISSN 2045-2322
Publisher Nature Publishing Group
Peer Reviewed Peer Reviewed
Volume 13
Article Number 2859
DOI https://doi.org/10.1038/s41598-023-28132-y
Public URL https://nottingham-repository.worktribe.com/output/17651987
Publisher URL https://www.nature.com/articles/s41598-023-28132-y
Additional Information Received: 11 March 2021; Accepted: 13 January 2023; First Online: 17 February 2023; : The authors declare no competing interests.

Files

Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology (2.9 Mb)
PDF

Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/

Copyright Statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.





You might also like



Downloadable Citations