Emily J. Clarke
Temporal extracellular vesicle protein changes following intraarticular treatment with integrin α10β1-selected mesenchymal stem cells in equine osteoarthritis
Clarke, Emily J.; Johnson, Emily; Caamaño Gutierrez, Eva; Andersen, Camilla; Berg, Lise C.; Jenkins, Rosalind E.; Lindegaard, Casper; Uvebrant, Kristina; Lundgren-Åkerlund, Evy; Turlo, Agnieszka; James, Victoria; Jacobsen, Stine; Peffers, Mandy J.
Authors
Emily Johnson
Eva Caamaño Gutierrez
Camilla Andersen
Lise C. Berg
Rosalind E. Jenkins
Casper Lindegaard
Kristina Uvebrant
Evy Lundgren-Åkerlund
Agnieszka Turlo
VICTORIA JAMES VICTORIA.JAMES@NOTTINGHAM.AC.UK
Professor of Molecular Biology
Stine Jacobsen
Mandy J. Peffers
Abstract
Introduction: Equine osteoarthritis (OA) is a heterogeneous, degenerative disease of the musculoskeletal system with multifactorial causation, characterized by a joint metabolic imbalance. Extracellular vesicles are nanoparticles involved in intracellular communication. Mesenchymal stem cell (MSC) therapy is a form of regenerative medicine that utilizes their properties to repair damaged tissues. Despite its wide use in veterinary practice, the exact mechanism of action of MSCs is not fully understood. The aim of this study was to determine the synovial fluid extracellular vesicle protein cargo following integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) treatment in an experimental model of equine osteoarthritis with longitudinal sampling.
Methods: Adipose tissue derived, integrin α10-MSCs were injected intraarticularly in six horses 18 days after experimental induction of OA. Synovial fluid samples were collected at day 0, 18, 21, 28, 35, and 70. Synovial fluid was processed and extracellular vesicles were isolated and characterized. Extracellular vesicle cargo was then analyzed using data independent acquisition mass spectrometry proteomics.
Results: A total of 442 proteins were identified across all samples, with 48 proteins differentially expressed (FDR ≤ 0.05) between sham-operated control joint without MSC treatment and OA joint treated with MSCs. The most significant pathways following functional enrichment analysis of the differentially abundant protein dataset were serine endopeptidase activity (p = 0.023), complement activation (classical pathway) (p = 0.023), and collagen containing extracellular matrix (p = 0.034). Due to the lack of an OA group without MSC treatment, findings cannot be directly correlated to only MSCs.
Discussion: To date this is the first study to quantify the global extracellular vesicle proteome in synovial fluid following MSC treatment of osteoarthritis. Changes in the proteome of the synovial fluid-derived EVs following MSC injection suggest EVs may play a role in mediating the effect of cell therapy through altered joint homeostasis. This is an important step toward understanding the potential therapeutic mechanisms of MSC therapy, ultimately enabling the improvement of therapeutic efficacy.
Citation
Clarke, E. J., Johnson, E., Caamaño Gutierrez, E., Andersen, C., Berg, L. C., Jenkins, R. E., …Peffers, M. J. (2022). Temporal extracellular vesicle protein changes following intraarticular treatment with integrin α10β1-selected mesenchymal stem cells in equine osteoarthritis. Frontiers in Veterinary Science, 9, Article 1057667. https://doi.org/10.3389/fvets.2022.1057667
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 10, 2022 |
Online Publication Date | Nov 24, 2022 |
Publication Date | Nov 24, 2022 |
Deposit Date | Nov 14, 2022 |
Publicly Available Date | Nov 24, 2022 |
Journal | Frontiers in Veterinary Science |
Electronic ISSN | 2297-1769 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Article Number | 1057667 |
DOI | https://doi.org/10.3389/fvets.2022.1057667 |
Keywords | Veterinary Science, equine, osteoarthritis, extracellular vesicles, biologics, MSC therapy |
Public URL | https://nottingham-repository.worktribe.com/output/13740707 |
Publisher URL | https://www.frontiersin.org/articles/10.3389/fvets.2022.1057667/full |
Files
Temporal extracellular vesicle protein changes following intraarticular treatment with integrin α10β1-selected mesenchymal stem cells in equine osteoarthritis
(2.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
The Role of Extracellular Vesicles in Allergic Sensitization: A Systematic Review
(2024)
Journal Article
Small non-coding RNA landscape of extracellular vesicles from an experimental model of equine osteoarthritis
(2023)
Presentation / Conference Contribution
PBMC-derived extracellular vesicles in a smoking-related inflammatory disease model
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search